Midterm 1 / 2016.2.19 / CS 3333.002 / Mathematical foundations of computer science

Name: _

Please show all work and justify your answers.

- 1. Let $m \ge 2$. Prove that if $a \equiv b \mod m$, then gcd(a, m) = gcd(b, m). Does the converse hold? Explain.
- 2. Apply the extended Euclidean algorithm to find gcd(244, 224) and the Bézout coefficients.
- 3. Use the Chinese remainder formula to solve the following system of congruences:

 $x \equiv 1 \mod 7, \qquad x \equiv 2 \mod 8, \qquad x \equiv 3 \mod 9.$

4. Prove by induction that $2^n \ge 1 + n$ for all $n \ge 1$.

1	2	3	4	total (40)