Name: \qquad
Please show all work and justify your answers.

1. Compute the following.
(a) Hexadecimal expansion of 255.
(b) Binary expansion of 255 .
(c) Decimal of hexadecimal AAA.
2. Apply Euclid's algorithm to 56 and 25 to show that they are co-prime. Find the Bézout coefficients.
3. Suppose $m \geq 2$. Show that if $a \equiv a^{\prime} \bmod m$ and $b \equiv b^{\prime} \bmod m$, then $a b \equiv a^{\prime} b^{\prime} \bmod m$.

Hint: $a b-a^{\prime} b^{\prime}=a b-a^{\prime} b+a^{\prime} b-a^{\prime} b^{\prime}$
4. Use the Chinese remainder theorem to solve the following system of congruences:

$$
x \equiv 3 \bmod 5, \quad 3 x \equiv 5 \bmod 7, \quad 3 x \equiv 4 \bmod 11
$$

Hint: First eliminate the leading coefficient by finding its multiplicative inverse.
5. Prove by induction that $n!<n^{n}$ for $n>1$.
6. Suppose f is a function given recursively by $f(0)=3$ and $f(n)=-2 f(n-1)$ for $n \geq 1$. Find a formula for f and prove its validity by induction.

1	2	3	4	5	6	total (60)	$\%$

