Midterm 1 / 2013.10.10 / CS 3333.001 / Mathematical foundations of computer science

Name: ____

Please show all work and justify your answers.

- 1. Compute the following.
 - (a) Hexadecimal expansion of 255.
 - (b) Binary expansion of 255.
 - (c) Decimal of hexadecimal AAA.
- 2. Apply Euclid's algorithm to 56 and 25 to show that they are co-prime. Find the Bézout coefficients.
- 3. Suppose $m \ge 2$. Show that if $a \equiv a' \mod m$ and $b \equiv b' \mod m$, then $ab \equiv a'b' \mod m$. Hint: ab - a'b' = ab - a'b + a'b - a'b'
- 4. Use the Chinese remainder theorem to solve the following system of congruences:

 $x \equiv 3 \mod 5$, $3x \equiv 5 \mod 7$, $3x \equiv 4 \mod 11$.

Hint: First eliminate the leading coefficient by finding its multiplicative inverse.

- 5. Prove by induction that $n! < n^n$ for n > 1.
- 6. Suppose f is a function given recursively by f(0) = 3 and f(n) = -2f(n-1) for $n \ge 1$. Find a formula for f and prove its validity by induction.

1	2	3	4	5	6	total (60)	%

Prelim. course grade:

%