ADVANCED EXAMINATION D TOPOLOGY D February 27, 1998

Dr. Dmitry Gokhman / Division of Mathematics and Statistics / University of Texas at San Antonio

Name: _

#	#	#	#	#	#	#	#	total (160)

Work any <u>eight</u> out of 10 problems. Please, indicate which problems you are doing in the top parts of the boxes above. Show all work.

- 1. Suppose X is a topological space, I is a set, and $\{A_i: i \in I\}$ is a collection of nonempty connected subsets of X. Furthermore, suppose that $A_i \cap A_j \neq \emptyset$ for all $i, j \in I$. Prove that $\bigcup_{i \in I} A_i$ is connected.
- 2. Suppose X is an infinite set and let $\mathcal{T} = \{ U \subseteq X \colon X \setminus U \text{ is finite} \} \cup \{ \emptyset \}.$
 - (a) Prove that \mathcal{T} is a topology.
 - (b) Prove that the topological space (X, \mathcal{T}) is T_1 , but not T_2 .
 - (c) Prove that (X, \mathcal{T}) is connected.
- 3. Suppose I is a set and $\{X_i: i \in I\}$ is a collection of topological spaces. Suppose that for each $i \in I$ we have a closed subset $A_i \subseteq X_i$. Prove that $\prod_{i \in I} A_i$ is closed subset of $\prod_{i \in I} X_i$ with the product topology.
- 4. Suppose X and Y are topological spaces, X is compact and $f: X \to Y$ is a continuous surjection. Prove that Y is compact.
- 5. Prove that an open connected subset of \mathbf{R}^n is path connected.
- 6. Suppose X and Y are connected topological spaces. Prove that $X \times Y$ is connected. You may use the result of problem 1.
- 7. Suppose X is a contractible topological space. Prove that X is path connected.
- 8. Suppose U is a convex subset of \mathbf{R}^n . Prove that U is contractible.
- 9. Prove that S^n the unit sphere in \mathbb{R}^{n+1} is homotopy equivalent to $\mathbb{R}^{n+1} \setminus 0$.
- 10. Suppose X is a path connected topological space. Prove that $H_0(X; \mathbf{Z}) \cong \mathbf{Z}$.