Name: _

l	#	#	#	#	#	#	#	#	total (160)
Ī									

Work any 8 problems. Indicate which problems you are doing in the top parts of the boxes above. Unless otherwise indicated, assume that D is a domain in \mathbf{C} and Σ is the Riemann sphere.

- 1. Prove that if f is holomorphic on D and has constant modulus, then f is constant.
- 2. Suppose f_n $(n \in \mathbf{Z}^+)$ are holomorphic functions on D which sum uniformly to $f = \sum_{n=1}^{\infty} f_n$. Prove that f is holomorphic on D.
- 3. Find the Maclaurin series expansion of $\frac{1}{(1+z)^2}$. Determine the radius of convergence r. Prove that the series converges uniformly on compact subsets of the open disk $\{z: |z| < r\}$.
- 4. State and prove the Maximum Modulus Principle. You may use one of the following (a) Cauchy's Integral Formula, (b) the Open Mapping Theorem.
- 5. State and prove Liouville's theorem. You may use Cauchy's Integral Formula.

6. (a) Evaluate
$$\int \frac{dz}{(z^2 - 4iz - 3)^3}$$
 around the circle $\{z: |z| = 2\}$.

(b) Evaluate
$$\int \frac{dz}{\sin z}$$
 around the unit circle.

- 7. Find the Laurent series for $\frac{1}{z^2 4iz 3}$ valid in the annulus $\{z: 1 < |z| < 3\}$.
- 8. Suppose $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$ near 0. Prove that the residue of f(z) at 0 is a_{-1} .
- 9. Suppose w_1 , w_2 , w_3 are distinct points of **C**. Prove that there exists a unique Möbius transformation $T: \Sigma \to \Sigma$ such that $T(0) = w_1$, $T(1) = w_2$, and $T(\infty) = w_3$.
- 10. Suppose $f: \Sigma \to \Sigma$ is meromorphic. Prove that
 - (a) The number of poles of f is finite.
 - (b) f is a rational function.