ADVANCED EXAMINATION COMPLEX ANALYSIS April 29, 1997

Dr. Dmitry Gokhman / Division of Mathematics and Statistics / UT San Antonio

Name: _____

#	#	#	#	#	#	#	#	total (160)

Work any <u>eight</u> problems. Indicate which problems you are doing in the top parts of the boxes above.

Throughout, unless otherwise indicated, assume that Ω is a lattice in C; D is a domain in C; and Σ is the Riemann sphere.

- 1. State and prove the Maximum Modulus Principle. You may use one of the following (a) Cauchy's Integral Formula, (b) the Open Mapping Theorem.
- 2. State and prove Liouville's theorem. You may use Cauchy's Integral Formula.
- 3. Suppose f(z) is entire and $|f(z)| \le |z|$ for all z. Prove that f(z) is linear.
- 4. (a) Evaluate $\int \frac{dz}{\tan z}$ around the unit circle. (b) Evaluate $\int_0^{2\pi} e^{e^{i\theta}} d\theta$. (Hint: Let $z = e^{i\theta}$.)
- 5. Find the Laurent series for $\frac{1}{z^2 3iz 2}$ valid in the annulus $\{z \in \mathbb{C}: 1 < |z| < 2\}$.
- 6. Suppose $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$ near 0. Prove that the residue of f(z) at 0 is a_{-1} .
- 7. Suppose $f: \mathbf{C} \to \mathbf{C}$ is entire and |f| is constant. Prove that f(z) is constant.
- 8. Suppose w_1 , w_2 , w_3 are distinct points of **C**. Prove that there exists a unique Möbius transformation $T: \Sigma \to \Sigma$ such that $T(0) = w_1$, $T(1) = w_2$, and $T(\infty) = w_3$.
- 9. Suppose $f: \Sigma \to \Sigma$ is meromorphic. Prove that
 - (a) The number of poles of f is finite.
 - (b) f is a rational function.

- 10. Suppose $f: \Sigma \to \Sigma$ is a rational function and $g: \mathbb{C}/\Omega \to \Sigma$ is an elliptic function. For each of f and g prove the following
 - (a) The number of poles is finite.
 - (b) The number of poles equals the number of zeros (counted with multiplicity).

11. Let
$$F_k(z) = \sum_{\omega \in \Omega \setminus \{0\}} \frac{1}{(z-\omega)^k}$$
 with $k \ge 3$.

- (a) Show that the above series for $F_k(z)$ converges normally on $\mathbf{C} \setminus \Omega$.
- (b) What are the poles of $F_k(z)$ and what is their multiplicity?
- (c) Prove that $F_k(z)$ is elliptic.

12. Let
$$\mathcal{P}(z) = \frac{1}{z^2} + \sum_{\omega \in \Omega \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right)$$
. Suppose $\mathcal{P}(z_1) = \mathcal{P}(z_2)$. Prove that $z_1 \pm z_2 \in \Omega$.