
Energy, entropy and uniqueness

Wave equation in one spatial dimension: utt = c2uxx

Boundary conditions: u(0, t) = u(L, t) = 0

Initial conditions: u(x, 0) = f(x), ut(x, 0) = g(x)

Solution by separation of variables and Fourier series: u(x, t) =
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Energy density: ε(x, t) = 1

2
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t + c2u2
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You can think of the first term as kinetic energy density and the second as potential energy density.

Total energy: E(t) =

∫ L

0

ε(x, t) dx

Conservation of total energy: By the product rule (utux)x = utxux + utuxx

Thus εt = ututt + c2uxuxt = ututt + c2 [(utux)x − utuxx] = ut(utt − c2uxx) + c2(utux)x = c2(utux)x

Et =

∫ L

0

εt dx = c2

∫ L
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(utux)x dx = c2 utux
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= c2 [ut(L, t)ux(L, t) − ut(0, t)ux(0, t)]

By the boundary conditions ut(0, t) = ut(L, t) = 0, so Et(t) = 0, so E(t) is constant.

Uniqueness:

Given two solutions satisfying the same initial conditions, their difference is a solution u satisfying u(x, 0) = 0 and ut(x, 0) = 0.

In this case ux(x, 0) = 0, so ε(x, 0) = 0, so E(0) = 0, and by the conservation of energy E(t) = 0.

Since ε(x, t) ≥ 0, we have ε(x, t) = 0, so ux(x, t) = ut(x, t) = 0, so u(x, t) is constant, and since u(x, 0) = 0, u(x, t) = 0.

Heat equation in three spatial dimensions: utt = c2∇2u

By Duhamel’s priniciple, the total heat in a small volume Ω is Q ≈ M u vol(Ω), where M is specific heat of matter.

By Newton’s law of cooling, heat flux across the boundary ∂Ω is proportional to temperature gradient: Qt = N

∫

∂Ω

∇u · n̂ dS

By the Gauss-Ostrogradski divergence theorem Qt = N

∫

Ω

∇ · ∇u dV ≈ N ∇2u vol(Ω)

Dividing M ut vol(Ω) ≈ N ∇2u vol(Ω) by the volume and taking limit as vol(Ω) → 0 we obtain ut =
N

M
∇

2u

Entropy: Define entropy density ε = 1

2
u2 and integrate over Ω: E(t) =

∫

Ω

ε dV =
1

2

∫

Ω

u2 dV

Entropy principle: In the presence of temperature gradients, total entropy of an insulated body decreases.

Product rule for divergence: ∇ · (ϕΦ) = ∇ϕ · Φ + ϕ(∇ · Φ) implies ∇ · (u∇u) = ∇u · ∇u + u(∇2u).

Thus, εt = u ut = u c2∇2u = c2 [∇ · (u∇u) − (∇u) · (∇u)].

Integrating and applying the divergence theorem we obtain Et = c2

[∫

∂Ω

u∇u · n̂ dS −
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(∇u) · (∇u) dV

]
.

For an insulated body ∇u · n̂ = 0 on the boundary ∂Ω, so Et = −c2

∫

Ω

(∇u) · (∇u) dV ≤ 0.

Uniqueness: Given two solutions with the same initial state, their difference u is a solution with initial state 0.

Its initial entropy is 0. Since E ≥ 0 and cannot increase (Et ≤ 0), it stays 0.

Therefore, at any time, ∇u = 0, so u is a constant and thus u = 0.

Heat equation in one spatial dimension: utt = c2uxx

Boundary conditions: u(0, t) = u(L, t) = 0

Initial condition: u(x, 0) = f(x)

Fourier series solution: u(x, t) =
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