Energy, entropy and uniqueness

Wave equation in one spatial dimension: $u_{t t}=c^{2} u_{x x}$
Boundary conditions: $u(0, t)=u(L, t)=0$
Initial conditions: $u(x, 0)=f(x), u_{t}(x, 0)=g(x)$
Solution by separation of variables and Fourier series: $u(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{L} x\right)\left[B_{n} \cos \left(\frac{c n \pi}{L} t\right)+D_{n} \sin \left(\frac{c n \pi}{L} t\right)\right]$
where $B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$ and $D_{n}=\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi}{L} x\right) d x$
Energy density: $\varepsilon(x, t)=\frac{1}{2}\left(u_{t}^{2}+c^{2} u_{x}^{2}\right)$
You can think of the first term as kinetic energy density and the second as potential energy density.
Total energy: $E(t)=\int_{0}^{L} \varepsilon(x, t) d x$
Conservation of total energy: By the product rule $\left(u_{t} u_{x}\right)_{x}=u_{t x} u_{x}+u_{t} u_{x x}$
Thus $\varepsilon_{t}=u_{t} u_{t t}+c^{2} u_{x} u_{x t}=u_{t} u_{t t}+c^{2}\left[\left(u_{t} u_{x}\right)_{x}-u_{t} u_{x x}\right]=u_{t}\left(u_{t t}-c^{2} u_{x x}\right)+c^{2}\left(u_{t} u_{x}\right)_{x}=c^{2}\left(u_{t} u_{x}\right)_{x}$
$E_{t}=\int_{0}^{L} \varepsilon_{t} d x=c^{2} \int_{0}^{L}\left(u_{t} u_{x}\right)_{x} d x=\left.c^{2} u_{t} u_{x}\right|_{x=0} ^{x=L}=c^{2}\left[u_{t}(L, t) u_{x}(L, t)-u_{t}(0, t) u_{x}(0, t)\right]$
By the boundary conditions $u_{t}(0, t)=u_{t}(L, t)=0$, so $E_{t}(t)=0$, so $E(t)$ is constant.

Uniqueness:

Given two solutions satisfying the same initial conditions, their difference is a solution u satisfying $u(x, 0)=0$ and $u_{t}(x, 0)=0$. In this case $u_{x}(x, 0)=0$, so $\varepsilon(x, 0)=0$, so $E(0)=0$, and by the conservation of energy $E(t)=0$.
Since $\varepsilon(x, t) \geq 0$, we have $\varepsilon(x, t)=0$, so $u_{x}(x, t)=u_{t}(x, t)=0$, so $u(x, t)$ is constant, and since $u(x, 0)=0, u(x, t)=0$.

Heat equation in three spatial dimensions: $u_{t t}=c^{2} \nabla^{2} u$

By Duhamel's priniciple, the total heat in a small volume Ω is $Q \approx M u \operatorname{vol}(\Omega)$, where M is specific heat of matter.
By Newton's law of cooling, heat flux across the boundary $\partial \Omega$ is proportional to temperature gradient: $Q_{t}=N \int_{\partial \Omega} \nabla u \cdot \widehat{n} d S$ By the Gauss-Ostrogradski divergence theorem $Q_{t}=N \int_{\Omega} \nabla \cdot \nabla u d V \approx N \nabla^{2} u \operatorname{vol}(\Omega)$
Dividing $M u_{t} \operatorname{vol}(\Omega) \approx N \nabla^{2} u \operatorname{vol}(\Omega)$ by the volume and taking limit as $\operatorname{vol}(\Omega) \rightarrow 0$ we obtain $u_{t}=\frac{N}{M} \nabla^{2} u$
Entropy: Define entropy density $\varepsilon=\frac{1}{2} u^{2}$ and integrate over Ω : $E(t)=\int_{\Omega} \varepsilon d V=\frac{1}{2} \int_{\Omega} u^{2} d V$
Entropy principle: In the presence of temperature gradients, total entropy of an insulated body decreases.
Product rule for divergence: $\nabla \cdot(\varphi \Phi)=\nabla \varphi \cdot \Phi+\varphi(\nabla \cdot \Phi)$ implies $\nabla \cdot(u \nabla u)=\nabla u \cdot \nabla u+u\left(\nabla^{2} u\right)$.
Thus, $\varepsilon_{t}=u u_{t}=u c^{2} \nabla^{2} u=c^{2}[\nabla \cdot(u \nabla u)-(\nabla u) \cdot(\nabla u)]$.
Integrating and applying the divergence theorem we obtain $E_{t}=c^{2}\left[\int_{\partial \Omega} u \nabla u \cdot \widehat{n} d S-\int_{\Omega}(\nabla u) \cdot(\nabla u) d V\right]$.
For an insulated body $\nabla u \cdot \widehat{n}=0$ on the boundary $\partial \Omega$, so $E_{t}=-c^{2} \int_{\Omega}(\nabla u) \cdot(\nabla u) d V \leq 0$.
Uniqueness: Given two solutions with the same initial state, their difference u is a solution with initial state 0 . Its initial entropy is 0 . Since $E \geq 0$ and cannot increase ($E_{t} \leq 0$), it stays 0 .
Therefore, at any time, $\nabla u=0$, so u is a constant and thus $u=0$.

Heat equation in one spatial dimension: $u_{t t}=c^{2} u_{x x}$
Boundary conditions: $u(0, t)=u(L, t)=0$
Initial condition: $u(x, 0)=f(x)$
Fourier series solution: $u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) \exp \left(-\left[\frac{c n \pi}{L}\right]^{2} t\right)$, where $B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$

