Stereographic Projection, the Riemann Sphere, and the Chordal Metric.

Definition: The Riemann sphere is the unit sphere $\mathbf{S} = \{Z \in \mathbf{R}^3 : |Z| = 1\}$ and we use the *x-y* plane to represent \mathbf{C} . Each point $z \in \mathbf{C}$ corresponds to a point $Z \in \mathbf{S}$ by *stereographic projection* to the north pole N (Fig. 1).

Proposition 1: A point
$$z = x + iy \in \mathbf{C}$$
 is stereographically projected to a point $Z = (\xi, \eta, \zeta) \in \mathbf{S}$, where $\xi = \frac{2x}{x^2 + y^2 + 1}$, $\eta = \frac{2y}{x^2 + y^2 + 1}$, $\zeta = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}$; $z = \frac{\xi + i\eta}{1 - \zeta}$.

Proof: The segment Nz is given by $\{r(t) = (tx, ty, 1-t): 0 \le t \le 1\}$. Now $r(t) \in \mathbf{S}$ when $|r(t)|^2 = 1$. This means we need to solve $t^2 |z|^2 + (1-t)^2 = 1$ for t. This is a quadratic equation $t^2(|z|^2 + 1) - 2t = 0$ with two roots t = 0 and $t = \frac{2}{|z|^2 + 1}$.

Thus, N = r(0) and $Z = r\left(\frac{2}{|z|^2 + 1}\right) = \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, 1 - \frac{2}{|z|^2 + 1}\right)$, which gives the first three formulas. The last formula follows from the similarity of triangles NOz and NAZ (Fig. 2).

Proposition 2: Suppose $z_1, z_2 \in \mathbf{C}$ correspond to $Z_1, Z_2 \in \mathbf{S}$. Then $|Z_1 - Z_2| = \frac{2|z_1 - z_2|}{\sqrt{1 + |z_1|^2}\sqrt{1 + |z_2|^2}}$.

Proof: Let $z = z_1$ or z_2 . Similarity of triangles NOz and NAZ (Fig. 2) implies $\frac{|N-z|}{1} = \frac{|N-Z|}{1-\zeta}$. But $|N-z| = \sqrt{|z|^2+1}$ and $1-\zeta = \frac{2}{|z|^2+1}$, so $|N-Z| = \frac{2}{\sqrt{1+|z|^2}}$ and |N-z| |N-Z| = 2. The plane Nz_1z_2 intersects **S** in a circle (Fig. 3).

Since $|N - z_1| |N - Z_1| = |N - z_2| |N - Z_2| = 2$, the triangles Nz_1z_2 and NZ_2Z_1 are similar, so $\frac{|Z_1 - Z_2|}{|z_1 - z_2|} = \frac{|N - Z_2|}{|N - z_1|}$.

Proposition 3: Let $\chi(z_1, z_2) = |Z_1 - Z_2| = \frac{2|z_1 - z_2|}{\sqrt{1 + |z_1|^2}\sqrt{1 + |z_2|^2}}$. Then χ is a metric on **C** (called the *chordal metric*), i.e. (a) $\chi(z_1, z_2) = \chi(z_2, z_1)$, (b) $\chi(z_1, z_2) \ge 0$ and $\chi(z_1, z_2) = 0 \Rightarrow z_1 = z_2$, (c) $\chi(z_1, z_3) \le \chi(z_1, z_2) + \chi(z_2, z_3)$. (Hille, p. 43) **Theorem 1:** Stereographic projection is conformal (angle preserving).

Proof 1: Let $a(Z_1, Z_2)$ denote arclenth from Z_1 to Z_2 along the circle that is the intersection of **S** with the plane NZ_1Z_2 (Fig. 3). If α is $\angle Z_1NZ_2$, then $\frac{a(Z_1, Z_2)}{|Z_1 - Z_2|} = \frac{\alpha}{\sin(\alpha)} \rightarrow 1$ as $\alpha \rightarrow 0$. Thus, as $z_2 \rightarrow z_1$, $\frac{a(Z_1, Z_2)}{|z_1 - z_2|} \rightarrow \frac{1}{|z_1|^2 + 1}$. Since the magnification factor depends only on z_1 we are done.

Proof 2: The line Nz makes equal angles with **C** and the tangent plane to **S** at Z (Fig. 4). Pick a line AZ tangent to **S** at Z. If this line is not parallel to **C** we may choose $A \in \mathbf{C}$. Then AZ and Az make equal angles with Nz (Fig. 5). If Az is parallel to **C** then these angles are still equal (both $\pi/2$). Given two lines tangent to **S** at Z, each line and its image in **C** make equal angles with Nz, so the angles between the two tangent lines and their images are equal as well (Fig. 6).

Theorem 2: Stereographic projection is circle preserving.

Proof: Pick a circle on **S** not containing N and let A be the vertex of the cone tangent to **S** at this circle (Fig. 7). In the plane NZA construct Ap parallel to az. As Z traverses the circle, |A - Z| is constant, but Az and az make equal angles with Nz, so the triangle AZp is isoceles and |A - Z| = |A - p|. Furthermore, the triangles NAp and Naz are similar, so $\frac{|a - z|}{|A - p|} = \frac{|N - a|}{|N - A|}$ which stays constant. Thus, |a - z| is constant. If the circle on **S** contains N, we get a line (Fig. 3).