Stereographic Projection, the Riemann Sphere, and the Chordal Metric.
Copyright 1996 Dr. Dmitry Gokhman

Definition: The Riemann sphere is the unit sphere $\mathbf{S}=\left\{Z \in \mathbf{R}^{3}:|Z|=1\right\}$ and we use the $x-y$ plane to represent \mathbf{C}. Each point $z \in \mathbf{C}$ corresponds to a point $Z \in \mathbf{S}$ by stereographic projection to the north pole N (Fig. 1).
Proposition 1: A point $z=x+i y \in \mathbf{C}$ is stereographically projected to a point $Z=(\xi, \eta, \zeta) \in \mathbf{S}$, where

$$
\xi=\frac{2 x}{x^{2}+y^{2}+1}, \quad \eta=\frac{2 y}{x^{2}+y^{2}+1}, \quad \zeta=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} ; \quad z=\frac{\xi+i \eta}{1-\zeta}
$$

Proof: The segment $N z$ is given by $\{r(t)=(t x, t y, 1-t): 0 \leq t \leq 1\}$. Now $r(t) \in \mathbf{S}$ when $|r(t)|^{2}=1$. This means we need to solve $t^{2}|z|^{2}+(1-t)^{2}=1$ for t. This is a quadratic equation $t^{2}\left(|z|^{2}+1\right)-2 t=0$ with two roots $t=0$ and $t=\frac{2}{|z|^{2}+1}$. Thus, $N=r(0)$ and $Z=r\left(\frac{2}{|z|^{2}+1}\right)=\left(\frac{2 x}{|z|^{2}+1}, \frac{2 y}{|z|^{2}+1}, 1-\frac{2}{|z|^{2}+1}\right)$, which gives the first three formulas. The last formula follows from the similarity of triangles $N O z$ and $N A Z$ (Fig. 2).

Proposition 2: Suppose $z_{1}, z_{2} \in \mathbf{C}$ correspond to $Z_{1}, Z_{2} \in \mathbf{S}$. Then $\left|Z_{1}-Z_{2}\right|=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}$.
Proof: Let $z=z_{1}$ or z_{2}. Similarity of triangles $N O z$ and $N A Z$ (Fig. 2) implies $\frac{|N-z|}{1}=\frac{|N-Z|}{1-\zeta}$. But $|N-z|=\sqrt{|z|^{2}+1}$ and $1-\zeta=\frac{2}{|z|^{2}+1}$, so $|N-Z|=\frac{2}{\sqrt{1+|z|^{2}}}$ and $|N-z||N-Z|=2$. The plane $N z_{1} z_{2}$ intersects \mathbf{S} in a circle (Fig. 3). Since $\left|N-z_{1}\right|\left|N-Z_{1}\right|=\left|N-z_{2}\right|\left|N-Z_{2}\right|=2$, the triangles $N z_{1} z_{2}$ and $N Z_{2} Z_{1}$ are similar, so $\frac{\left|Z_{1}-Z_{2}\right|}{\left|z_{1}-z_{2}\right|}=\frac{\left|N-Z_{2}\right|}{\left|N-z_{1}\right|}$. ■

Proposition 3: Let $\chi\left(z_{1}, z_{2}\right)=\left|Z_{1}-Z_{2}\right|=\frac{2\left|z_{1}-z_{2}\right|}{\sqrt{1+\left|z_{1}\right|^{2}} \sqrt{1+\left|z_{2}\right|^{2}}}$. Then χ is a metric on \mathbf{C} (called the chordal metric), i.e.
(a) $\chi\left(z_{1}, z_{2}\right)=\chi\left(z_{2}, z_{1}\right)$,
(b) $\chi\left(z_{1}, z_{2}\right) \geq 0$ and $\chi\left(z_{1}, z_{2}\right)=0 \Rightarrow z_{1}=z_{2}$,
(c) $\chi\left(z_{1}, z_{3}\right) \leq \chi\left(z_{1}, z_{2}\right)+\chi\left(z_{2}, z_{3}\right)$.
(Hille, p

Theorem 1: Stereographic projection is conformal (angle preserving).
Proof 1: Let $a\left(Z_{1}, Z_{2}\right)$ denote arclenth from Z_{1} to Z_{2} along the circle that is the intersection of \mathbf{S} with the plane $N Z_{1} Z_{2}$ (Fig. 3). If α is $\angle Z_{1} N Z_{2}$, then $\frac{a\left(Z_{1}, Z_{2}\right)}{\left|Z_{1}-Z_{2}\right|}=\frac{\alpha}{\sin (\alpha)} \rightarrow 1$ as $\alpha \rightarrow 0$. Thus, as $z_{2} \rightarrow z_{1}, \frac{a\left(Z_{1}, Z_{2}\right)}{\left|z_{1}-z_{2}\right|} \rightarrow \frac{1}{\left|z_{1}\right|^{2}+1}$. Since the magnification factor depends only on z_{1} we are done.

Proof 2: The line $N z$ makes equal angles with \mathbf{C} and the tangent plane to \mathbf{S} at Z (Fig. 4). Pick a line $A Z$ tangent to \mathbf{S} at Z. If this line is not parallel to \mathbf{C} we may choose $A \in \mathbf{C}$. Then $A Z$ and $A z$ make equal angles with $N z$ (Fig. 5). If $A z$ is parallel to \mathbf{C} then these angles are still equal (both $\pi / 2$). Given two lines tangent to \mathbf{S} at Z, each line and its image in \mathbf{C} make equal angles with $N z$, so the angles between the two tangent lines and their images are equal as well (Fig. 6).
Theorem 2: Stereographic projection is circle preserving.
Proof: Pick a circle on \mathbf{S} not containing N and let A be the vertex of the cone tangent to \mathbf{S} at this circle (Fig. 7). In the plane $N Z A$ construct $A p$ parallel to $a z$. As Z traverses the circle, $|A-Z|$ is constant, but $A z$ and $a z$ make equal angles with $N z$, so the triangle $A Z p$ is isoceles and $|A-Z|=|A-p|$. Furthermore, the triangles $N A p$ and $N a z$ are similar, so $\frac{|a-z|}{|A-p|}=\frac{|N-a|}{|N-A|}$ which stays constant. Thus, $|a-z|$ is constant. If the circle on \mathbf{S} contains N, we get a line (Fig. 3).

