Linear first order differential equations:

$y^{\prime}+p y=q, y=\frac{1}{v} \int v q d x$, where $v=e^{\int p d x}$

Limits:

$\lim _{n \rightarrow \infty} x^{\frac{1}{n}}=1$ for $x>0$
$\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
$\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$
$\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$

Taylor series:

$f(x)=\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}+\frac{f^{(n+1)}\left(c^{*}\right)}{(n+1)!}(x-c)^{n+1}$ for some c^{*} between c and x
Geometric series $\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k}$
Binomial series $(1+x)^{r}=\sum_{k=0}^{\infty} \frac{r(r-1) \ldots(r-k+1)}{k!} x^{k}$
$e^{x}=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k}$
$\sinh x=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}$
$\cosh x=\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}$
$\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$
$\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}$

Fourier series:

Given piecewise continuous $f(t)$ on an interval $[c-L, c+L]$ centered at c, at points of continuity $f(t)=a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi t}{L}+b_{n} \sin \frac{n \pi t}{L}\right]$
where
a_{0} is the average of f on the interval and for $n \geq 1$
$a_{n}=\frac{1}{L} \int_{c-L}^{c+L} f(t) \cos \frac{n \pi t}{L} d t$
$b_{n}=\frac{1}{L} \int_{c-L}^{c+L} f(t) \sin \frac{n \pi t}{L} d t$

