Higher derivatives as multilinear maps

Suppose $U \subseteq \mathbf{R}^{n}$ is a domain (i.e. open and connected) and $f: U \rightarrow \mathbf{R}^{m}$ is differentiable at all $x \in U$. As we have seen, the derivative map of f at x is a linear map of Δx, i.e. $f^{\prime}(x): \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Making the dependence on x explicit, we get a linear-map-valued function of x, i.e. $f^{\prime}: U \rightarrow \operatorname{Hom}\left[\mathbf{R}^{n}, \mathbf{R}^{m}\right]$. The derivative map of the first derivative is a linear map of say $\overline{\Delta x}$, i.e. $f^{\prime \prime}(x): \mathbf{R}^{n} \rightarrow \operatorname{Hom}\left[\mathbf{R}^{n}, \mathbf{R}^{m}\right]$. We may think of this as a bilinear map of Δx and $\overline{\Delta x}$, i.e. $f^{\prime \prime}(x): \mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Similarly we see that the k-th derivative is a k-linear map $f^{(k)}(x):\left(\mathbf{R}^{n}\right)^{k} \rightarrow \mathbf{R}^{m}$. It turns out that these multilinear maps are symmetric.
Cartesian representation: Writing $\Delta x=\left(\Delta x_{1}, \ldots \Delta x_{n}\right)$ we may represent the linear map $f^{\prime}(x)$ by multiplication with the derivative matrix (the matrix of partial derivatives, a.k.a. the Jacobian matrix)

$$
f^{\prime}(x)(\Delta x)=\sum_{i=1}^{n} f_{i}(x) \Delta x_{i}
$$

Second derivative: For simplicity assume that $n=2$ and $m=1$. Taking the derivative we obtain

$$
\begin{aligned}
f^{\prime \prime}(x)(\Delta x, \overline{\Delta x}) & =\left(f^{\prime}(x)(\Delta x)\right)(\overline{\Delta x})=f^{\prime}(x)(\Delta x)_{1} \overline{\Delta x}_{1}+f^{\prime}(x)(\Delta x)_{2} \overline{\Delta x}_{2} \\
& =\left(f_{1}(x) \Delta x_{1}+f_{2}(x) \Delta x_{2}\right)_{1} \overline{\Delta x}_{1}+\left(f_{1}(x) \Delta x_{1}+f_{2}(x) \Delta x_{2}\right) \overline{\Delta x}_{2} \\
& =f_{11}(x) \Delta x_{1} \overline{\Delta x}_{1}+f_{21}(x) \Delta x_{2} \overline{\Delta x}_{1}+f_{12}(x) \Delta x_{1} \overline{\Delta x}_{2}+f_{22}(x) \Delta x_{2} \overline{\Delta x}_{2}
\end{aligned}
$$

The matrix representing this bilinear map is the matrix of second partial derivatives of f. Note that this is a symmetric matrix.

$$
f^{\prime \prime}(x)(\Delta x, \overline{\Delta x})=\left(\Delta x_{1}, \Delta x_{2}\right)\left(\begin{array}{ll}
f_{11}(x) & f_{12}(x) \\
f_{21}(x) & f_{22}(x)
\end{array}\right)\binom{\overline{\Delta x}_{1}}{\overline{\Delta x}_{2}}
$$

More generally with arbitrary n and m we can write

$$
f^{\prime \prime}(x)(\Delta x, \overline{\Delta x})=\sum_{j=1}^{n} f^{\prime}(x)(\Delta x)_{j} \overline{\Delta x}_{j}=\sum_{j=1}^{n}\left(\sum_{i=1}^{n} f_{i}(x) \Delta x_{i}\right)_{j} \overline{\Delta x}_{j}=\sum_{i, j=1}^{n} f_{i j}(x) \Delta x_{i} \overline{\Delta x}_{j}
$$

Higher derivatives: We can obtain similar formulas for higher derivatives with the symmetric tensor of higher partial derivatives.
Taylor polynomials: Suppose f is k times differentiable at x. Then $f(x+\Delta x)$ is "approximated" (as $\Delta x \rightarrow 0)$ by the k-th Taylor polynomial

$$
f(x+\Delta x) \approx f(x)+f^{\prime}(x)(\Delta x)+\frac{1}{2} f^{\prime \prime}(x)(\Delta x, \Delta x)+\frac{1}{6} f^{\prime \prime \prime}(x)(\Delta x, \Delta x, \Delta x)+\ldots \frac{1}{k!} f^{(k)}(x)(\Delta x, \Delta x, \ldots \Delta x)
$$

For example in cartesian coordinates with $n=2$ and $m=1$ we get

$$
\begin{aligned}
f\left(x_{1}+\Delta x_{1}, x_{2}+\Delta x_{2}\right) & \approx f(x)+f_{1}(x) \Delta x_{1}+f_{2}(x) \Delta x_{2}+\frac{1}{2} f_{11}(x) \Delta x_{1}^{2}+f_{12}(x) \Delta x_{1} \Delta x_{2}+\frac{1}{2} f_{22}(x) \Delta x_{2}^{2} \\
& +\ldots \frac{1}{k!} \sum_{i_{1}, i_{2}, \ldots i_{k}=1}^{n} f_{i_{1} i_{2} \ldots i_{n}}(x) \Delta x_{i_{1}} \Delta x_{i_{2}} \ldots \Delta x_{i_{k}}
\end{aligned}
$$

Copyright 1997 Dr. Dmitry Gokhman

