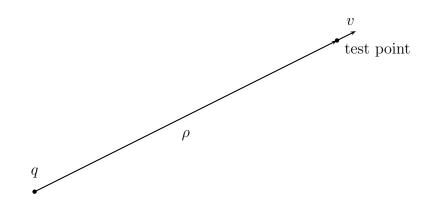
Velocity field induced by a source

(Gravity: Newton, 1679; Electric field due to charge: Charles Coulomb 1785)



A source q induces velocity v at a test point with displacement vector $\rho = (x, y, z)$:

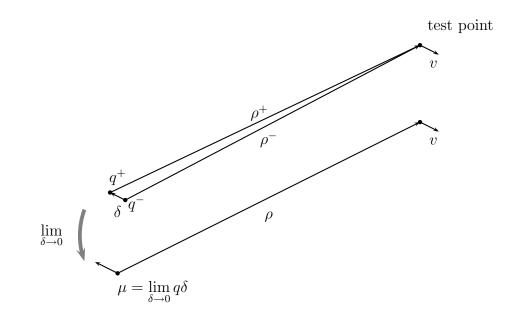
$$v = \frac{q}{4\pi} \frac{\rho}{\left|\rho\right|^3} = \frac{q}{4\pi} \frac{\widehat{\rho}}{\left|\rho\right|^2}$$

Theorem:

(i) [Lagrange, 1773]
$$v = \nabla \varphi$$
, where $\varphi = -\frac{q}{4\pi} \frac{1}{|\rho|}$

(ii) Except at the source q, v is solenoidal $(\nabla \cdot v = 0)$, so φ is harmonic.

Velocity field induced by a doublet



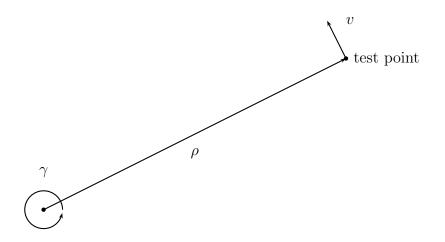
$$\varphi = \lim_{\delta \to 0} \left[-\frac{q}{4\pi} \frac{1}{|\rho^+|} + \frac{q}{4\pi} \frac{1}{|\rho^-|} \right] = -\frac{1}{4\pi} \lim_{\delta \to 0} q \left| \delta \right| \left[\frac{1}{|\rho^+|} - \frac{1}{|\rho^-|} \right] / \left| \delta \right| = -\frac{|\mu|}{4\pi} \frac{\partial}{\partial \hat{\mu}} \frac{1}{|\rho|}$$

Theorem: Except at the doublet, φ is harmonic.

Proof: Superposition.

Velocity field induced by a vortex

(Magnetism: Jean-Baptiste Biot, Felix Savart, 1820)



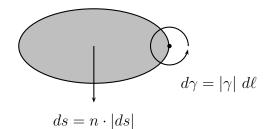
A vortex γ induces velocity v at a test point with displacement vector $\rho = (x, y, z)$:

$$v = \frac{\gamma}{4\pi} \times \frac{\rho}{\left|\rho\right|^3} = \frac{\gamma}{4\pi} \times \frac{\widehat{\rho}}{\left|\rho\right|^2}$$

Theorem: v is solenoidal $(\nabla \cdot v = 0)$

Proof:

$$\nabla \cdot v = \frac{1}{4\pi} \nabla \cdot \frac{\gamma \times \rho}{|\rho|^3} = \frac{1}{4\pi} \left[(\nabla \times \gamma) \cdot \frac{\rho}{|\rho|^3} - \gamma \cdot \left(\nabla \times \frac{\rho}{|\rho|^3} \right) \right] = \frac{1}{4\pi} \gamma \cdot \left[\nabla \times \left(\nabla \frac{1}{|\rho|} \right) \right] = 0$$



Velocity induced by a filament is a line integral $v = \frac{1}{4\pi} \int_{\partial \mathscr{D}} d\gamma \times \nabla \frac{1}{|\rho|}$

Theorem:

(i) $v = \nabla \varphi$, where $\varphi = \frac{|\gamma|}{4\pi} \int_{\mathscr{D}} \nabla \frac{1}{|\rho|} \cdot ds$

(equivalent to a uniform doublet distribution on \mathscr{D})

(ii) v is solenoidal $(\nabla \cdot v = 0)$, so φ is harmonic.

Proof: For any vector field F, we have $\int_{\partial \mathscr{D}} F \times d\ell = \int_{\mathscr{D}} \nabla \cdot F \, ds - \nabla \int_{\mathscr{D}} F \cdot ds$ Therefore, since $\frac{1}{|\rho|}$ is harmonic, $v = \frac{|\gamma|}{4\pi} \nabla \int_{\mathscr{D}} \nabla \frac{1}{|\rho|} \cdot ds$