
Velocity field induced by a source

(Gravity: Newton, 1679; Electric field due to charge: Charles Coulomb 1785)
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A source q induces velocity v at a test point with displacement vector ρ = (x, y, z):
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Theorem:

(i) [Lagrange, 1773] v = ∇ϕ, where ϕ = − q
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(ii) Except at the source q, v is solenoidal (∇ · v = 0), so ϕ is harmonic.



Velocity field induced by a doublet
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Theorem: Except at the doublet, ϕ is harmonic.

Proof: Superposition.



Velocity field induced by a vortex

(Magnetism: Jean-Baptiste Biot, Felix Savart, 1820)
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A vortex γ induces velocity v at a test point with displacement vector ρ = (x, y, z):
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Theorem: v is solenoidal (∇ · v = 0)
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Velocity field induced by a vortex filament

ds = n · |ds|
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Velocity induced by a filament is a line integral v =
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Theorem:

(i) v = ∇ϕ, where ϕ =
|γ|
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(equivalent to a uniform doublet distribution on D)

(ii) v is solenoidal (∇ · v = 0), so ϕ is harmonic.

Proof: For any vector field F , we have
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