Path independence and potential

Equivalence of path independence and the existence of a potential: Given a vector field F', sometimes we can guess a
function f such that df = F'-ds (i.e. D(f) = F). Such a function is called a potential for F' (except in electromagnetic theory,
where by convention there is an extra minus (F = —VV) arising from electrons being negatively charged). If a potential
exists, F is called conservative (its energy is conserved) or a gradient field (F = V f) and the corresponding differential form
F - ds is called ezact. In this case path independence follows from F.T.C. (i). Conversely, F.T.C. (ii) gives a potential (the
indefinite integral) if we have path independence.

A necessary condition for a potential: If we have a potential, then 0F;/0x; = OF;/0x; for i # j. If a vector field F
satisfies this condition, the corresponding differential form F - ds is called closed (cf. Th. 6.3.5, pp. 400, 401). Another way
of expressing the necessity of this condition is: exact forms are closed.

Sketch of proof: 0F;/0x; = 0(0f/0x;) /0x; = 0(0f/0x;) /0x; = OF;/0x; by the equality of mixed partial derivatives
(Th. 2.4.3, pp. 138, 140).

A criterion for path independence: In general, path independence is impossible to verify directly (cf. top of p. 397).
However, at least in the case when the domain of F' is simply connected, i.e. all closed curves can be continuously contracted
inside the domain to a point (cf. Def. 6.3.4, p. 399), the above necessary condition is actually sufficient for the existence of a
potential (cf. Th. 6.3.5, pp. 400, 401). Another way of saying this is: on a simply connected domain closed forms are exact.
This is sometimes known as Poincaré’s Lemma, although it is due to V. Volterra.

Sketch of proof: To get an idea of how this is proved let us make a simplifying assumption that we are in R?. F.T.C. (ii)
suggests that an integral is a good candidate for a potential and since ultimately we seek path independence, an easy choice
of a path may be sufficient. Consider the straight line segment from the origin to an arbitrary point (z,y) parametrized by
s(t) = (z,y)t = (xt,yt),0 <t < 1. Define our candidate for a potential by
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and take the partial derivative (under the integral sign) with respect to x (the other partial derivative is similar):
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Now use the chain rule (derivatives with respect to the first variable are denoted by D; to avoid confusion with 9/0x):
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By our assumption Dj (Fy) = D2(F7), so
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By F.T.C. (i) we obtain
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Finding a potential: A potential can be found by several techniques.
(i) The most obvious technique is guessing a formula for f and checking that df = F - ds (cf. Example 3, p. 398).

(ii) A more algorithmic technique is provided by indefinite integration as in F.T.C. (ii). Integration can be difficult, although
sometimes a judicious choice of path may be of assistance (cf. Example 6, p. 400).

(iii) Another common technique is partial integration illustrated in Examples 7 and 8 (p. 402).
Application to integration: Given a differential form F' - ds, it is easy to check whether it is closed. If so, and if the
domain of definition of F' is simply connected, F' - ds is exact, so there exists a potential. Any integral of F' - ds can now be

evaluated using F.T.C. (i) — it is simply the difference in potential between the endpoints of the path (cf. Example 3, p.
398). For a closed path the integral would then be 0 (cf. Example 5, p. 400).

Reference: S. J. Colley, Vector Calculus, Prentice-Hall, 1999.
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