
Path independence and potential

Equivalence of path independence and the existence of a potential: Given a vector field F , sometimes we can guess a
function f such that df = F ·ds (i.e. D(f) = F ). Such a function is called a potential for F (except in electromagnetic theory,
where by convention there is an extra minus (E = −∇V ) arising from electrons being negatively charged). If a potential
exists, F is called conservative (its energy is conserved) or a gradient field (F = ∇f) and the corresponding differential form
F · ds is called exact. In this case path independence follows from F.T.C. (i). Conversely, F.T.C. (ii) gives a potential (the
indefinite integral) if we have path independence.

A necessary condition for a potential: If we have a potential, then ∂Fi/∂xj = ∂Fj/∂xi for i 6= j. If a vector field F
satisfies this condition, the corresponding differential form F · ds is called closed (cf. Th. 6.3.5, pp. 400, 401). Another way
of expressing the necessity of this condition is: exact forms are closed.

Sketch of proof: ∂Fi/∂xj = ∂ (∂f/∂xi) /∂xj = ∂ (∂f/∂xj) /∂xi = ∂Fj/∂xi by the equality of mixed partial derivatives
(Th. 2.4.3, pp. 138, 140).

A criterion for path independence: In general, path independence is impossible to verify directly (cf. top of p. 397).
However, at least in the case when the domain of F is simply connected, i.e. all closed curves can be continuously contracted
inside the domain to a point (cf. Def. 6.3.4, p. 399), the above necessary condition is actually sufficient for the existence of a
potential (cf. Th. 6.3.5, pp. 400, 401). Another way of saying this is: on a simply connected domain closed forms are exact.
This is sometimes known as Poincaré’s Lemma, although it is due to V. Volterra.

Sketch of proof: To get an idea of how this is proved let us make a simplifying assumption that we are in R2. F.T.C. (ii)
suggests that an integral is a good candidate for a potential and since ultimately we seek path independence, an easy choice
of a path may be sufficient. Consider the straight line segment from the origin to an arbitrary point (x, y) parametrized by
s(t) = (x, y)t = (xt, yt), 0 ≤ t ≤ 1. Define our candidate for a potential by

f(x, y) =
∫

F · ds =
∫

F1(xt, yt) d(xt) + F2(xt, yt) d(yt) =
∫ 1

0

F1(xt, yt)x dt + F2(xt, yt)y dt

and take the partial derivative (under the integral sign) with respect to x (the other partial derivative is similar):

∂f(x, y)
∂x

=
∫ 1

0

∂F1(xt, yt)
∂x

x dt + F1(xt, yt) dt +
∂F2(xt, yt)

∂x
y dt.

Now use the chain rule (derivatives with respect to the first variable are denoted by D1 to avoid confusion with ∂/∂x):

∂f(x, y)
∂x

=
∫ 1

0

D1(F1(xt, yt)) tx dt + F1(xt, yt) dt + D1(F2(xt, yt)) ty dt.

By our assumption D1(F2) = D2(F1), so

∂f(x, y)
∂x

=
∫ 1

0

D1(F1(xt, yt)) tx dt + F1(xt, yt) dt + D2(F1(xt, yt)) ty dt =
∫ 1

0

∂F1(xt, yt) t

∂t
dt.

By F.T.C. (i) we obtain
∂f(x, y)

∂x
= F1(xt, yt) t

∣∣∣1
0

= F1(x, y).

Finding a potential: A potential can be found by several techniques.

(i) The most obvious technique is guessing a formula for f and checking that df = F · ds (cf. Example 3, p. 398).

(ii) A more algorithmic technique is provided by indefinite integration as in F.T.C. (ii). Integration can be difficult, although
sometimes a judicious choice of path may be of assistance (cf. Example 6, p. 400).

(iii) Another common technique is partial integration illustrated in Examples 7 and 8 (p. 402).

Application to integration: Given a differential form F · ds, it is easy to check whether it is closed. If so, and if the
domain of definition of F is simply connected, F · ds is exact, so there exists a potential. Any integral of F · ds can now be
evaluated using F.T.C. (i) — it is simply the difference in potential between the endpoints of the path (cf. Example 3, p.
398). For a closed path the integral would then be 0 (cf. Example 5, p. 400).

Reference: S. J. Colley, Vector Calculus, Prentice-Hall, 1999.
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