## Path independence and potential

Equivalence of path independence and the existence of a potential: Given a vector field $F$, sometimes we can guess a function $f$ such that $d f=F \cdot d s$ (i.e. $D(f)=F$ ). Such a function is called a potential for $F$ (except in electromagnetic theory, where by convention there is an extra minus $(E=-\nabla V)$ arising from electrons being negatively charged). If a potential exists, $F$ is called conservative (its energy is conserved) or a gradient field $(F=\nabla f)$ and the corresponding differential form $F \cdot d s$ is called exact. In this case path independence follows from F.T.C. (i). Conversely, F.T.C. (ii) gives a potential (the indefinite integral) if we have path independence.
A necessary condition for a potential: If we have a potential, then $\partial F_{i} / \partial x_{j}=\partial F_{j} / \partial x_{i}$ for $i \neq j$. If a vector field $F$ satisfies this condition, the corresponding differential form $F \cdot d s$ is called closed (cf. Th. 6.3.5, pp. 400, 401). Another way of expressing the necessity of this condition is: exact forms are closed.

Sketch of proof: $\partial F_{i} / \partial x_{j}=\partial\left(\partial f / \partial x_{i}\right) / \partial x_{j}=\partial\left(\partial f / \partial x_{j}\right) / \partial x_{i}=\partial F_{j} / \partial x_{i}$ by the equality of mixed partial derivatives (Th. 2.4.3, pp. 138, 140).
A criterion for path independence: In general, path independence is impossible to verify directly (cf. top of p. 397). However, at least in the case when the domain of $F$ is simply connected, i.e. all closed curves can be continuously contracted inside the domain to a point (cf. Def. 6.3.4, p. 399), the above necessary condition is actually sufficient for the existence of a potential (cf. Th. 6.3.5, pp. 400, 401). Another way of saying this is: on a simply connected domain closed forms are exact. This is sometimes known as Poincaré's Lemma, although it is due to V. Volterra.

Sketch of proof: To get an idea of how this is proved let us make a simplifying assumption that we are in $\mathbf{R}^{2}$. F.T.C. (ii) suggests that an integral is a good candidate for a potential and since ultimately we seek path independence, an easy choice of a path may be sufficient. Consider the straight line segment from the origin to an arbitrary point ( $x, y$ ) parametrized by $s(t)=(x, y) t=(x t, y t), 0 \leq t \leq 1$. Define our candidate for a potential by

$$
f(x, y)=\int F \cdot d s=\int F_{1}(x t, y t) d(x t)+F_{2}(x t, y t) d(y t)=\int_{0}^{1} F_{1}(x t, y t) x d t+F_{2}(x t, y t) y d t
$$

and take the partial derivative (under the integral sign) with respect to $x$ (the other partial derivative is similar):

$$
\frac{\partial f(x, y)}{\partial x}=\int_{0}^{1} \frac{\partial F_{1}(x t, y t)}{\partial x} x d t+F_{1}(x t, y t) d t+\frac{\partial F_{2}(x t, y t)}{\partial x} y d t
$$

Now use the chain rule (derivatives with respect to the first variable are denoted by $D_{1}$ to avoid confusion with $\partial / \partial x$ ):

$$
\frac{\partial f(x, y)}{\partial x}=\int_{0}^{1} D_{1}\left(F_{1}(x t, y t)\right) t x d t+F_{1}(x t, y t) d t+D_{1}\left(F_{2}(x t, y t)\right) t y d t
$$

By our assumption $D_{1}\left(F_{2}\right)=D_{2}\left(F_{1}\right)$, so

$$
\frac{\partial f(x, y)}{\partial x}=\int_{0}^{1} D_{1}\left(F_{1}(x t, y t)\right) t x d t+F_{1}(x t, y t) d t+D_{2}\left(F_{1}(x t, y t)\right) t y d t=\int_{0}^{1} \frac{\partial F_{1}(x t, y t) t}{\partial t} d t
$$

By F.T.C. (i) we obtain

$$
\frac{\partial f(x, y)}{\partial x}=\left.F_{1}(x t, y t) t\right|_{0} ^{1}=F_{1}(x, y)
$$

Finding a potential: A potential can be found by several techniques.
(i) The most obvious technique is guessing a formula for $f$ and checking that $d f=F \cdot d s$ (cf. Example 3, p. 398).
(ii) A more algorithmic technique is provided by indefinite integration as in F.T.C. (ii). Integration can be difficult, although sometimes a judicious choice of path may be of assistance (cf. Example 6, p. 400).
(iii) Another common technique is partial integration illustrated in Examples 7 and 8 (p. 402).

Application to integration: Given a differential form $F \cdot d s$, it is easy to check whether it is closed. If so, and if the domain of definition of $F$ is simply connected, $F \cdot d s$ is exact, so there exists a potential. Any integral of $F \cdot d s$ can now be evaluated using F.T.C. (i) - it is simply the difference in potential between the endpoints of the path (cf. Example 3, p. 398). For a closed path the integral would then be 0 (cf. Example 5, p. 400).

Reference: S. J. Colley, Vector Calculus, Prentice-Hall, 1999.

