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Differentials: Given f(r) on R3 and a point r0 let ∆r = r− r0. The differential df is the linear function of ∆r whose graph
is tangent to the graph of w = f(r) at r0. If we choose the coordinate projections as the basis for the vector space of linear
maps of ∆r, then we can expand df in this basis. We denote the coordinate projections by dx, dy, dz (e.g. dy(∆r) = ∆y).
The coefficients are called the partial derivatives of f at r0 and we get df = fx dx + fy dy + fz dz = D(f) dr

Forms: A linear function of ∆r that also depends on r0 (from now on we will drop the subscript) is called a 1-form. Thus,
df is a 1-form. Higher degree forms are multilinear alternating functions. An n-form is a function of n-variables, linear in
each variable, such that interchanging variables produces a minus sign (in general, a permutation of the variables gives its

parity). For example, ∆r1, ∆r2 7→ ∆y1 ∆z2 − ∆y2 ∆z1 = det
(

∆y1 ∆y2

∆z1 ∆z2

)
is a 2-form denoted by dy dz.

The vector space of all n-forms is denoted Λn. The table below shows cartesian expansions of n-forms on R3:
degree name cartesian coordinate form dim Λn

0-form function f = f(x, y, z) 1
1-form work form ω = A(x, y, z) dx + B(x, y, z) dy + C(x, y, z) dz 3
2-form flux form ϕ = P (x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy 3
3-form density form ρ = f(x, y, z) dx dy dz 1

Products: In the above example dy dz = −dz dy. Also dx dx = 0. These are general principles which we can apply to
multiplication of forms. Famous vector products are special cases of this multiplication.
product of forms vector interpretation
u v = (uxdx + uydy + uzdz) (vxdy dz + vydz dx + vzdx dy) = (uxvx + uyvy + uzvz)dx dy dz dot product
u v = (ux dx + uy dy + uz dz) (vx dx + vy dy + vz dz) = (uyvz − uzvy) dy dz + (uzvx − uxvz) dz dx cross product

+(uxvy − uyvx) dx dy = det
(

uy uz

vy vz

)
dy dz + det

(
uz ux

vz vx

)
dz dx + det

(
ux uy

vx vy

)
dx dy

u v w = det


 ux uy uz

vx vy vz

wx wy wz


 dx dy dz triple product

Differentials of n-forms: We extend the definition of d from 0-forms to n-forms by imposing the rules of differentiation
linearity product rule
dc = 0 d(ω + η) = dω + dη d(ω η) = dω η + (−1)deg ωω dη d(d(ω)) = 0

The tables below show d of various forms; the correspoding vector differential operators, where we use the del operator

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
and the usual vector products, except that the partials are applied; and some of the vector versions of

the rules.
differential vector interpretation

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz gradf = D(f) = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

dω = d(Adx + Bdy + Cdz) =
(

∂C

∂y
− ∂B

∂z

)
dy dz curlΨ = rotΨ = ∇× Ψ

+
(

∂A

∂z
− ∂C

∂x

)
dz dx +

(
∂B

∂x
− ∂A

∂y

)
dx dy =

(
∂Ψz

∂y
− ∂Ψy

∂z
,
∂Ψx

∂z
− ∂Ψz

∂x
,
∂Ψy

∂x
− ∂Ψx

∂y

)

dϕ = d(Pdy dz + Qdz dx + Rdxdy)

=
(

∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dx dy dz divΦ = ∇ · Φ =

∂Φx

∂x
+

∂Φy

∂y
+

∂Φz

∂z

∇(f + g) = ∇f + ∇g

∇× (Ψ1 + Ψ2) = ∇× Ψ1 + ∇× Ψ2

∇ · (Φ1 + Φ2) = ∇ · Φ1 + ∇ · Φ2

∇(fg) = (∇f)g + f(∇g)
∇× (fΨ) = (∇f) × Ψ + f(∇× Ψ)
∇ · (Ψ1 × Ψ2) = (∇× Ψ1) · Ψ2 − Ψ1 · (∇× Ψ2)
∇ · (fΦ) = (∇f) · Φ + f(∇ · Φ)

∇× (∇f) = 0
∇ · (∇× Φ) = 0

Poincaré’s lemma: 1 For contractible 2 domains we have a converse to d(d(ω)) = 0, namely if dϕ = 0, then there is ω
such that dω = ϕ. Famous special cases of this say that an irrotational (conservative) vector field has a potential and a
divergence-free vector field has a vector potential

1Due to Vito Volterra (1860–1940).
2 A space is contractible means the identity map on this space is homotopic to the constant map. Roughly speaking this means that the space

is continuously deformable to a point. Since various “holes” in space obstruct such a deformation, a contractible space can be thought of as lacking
holes. A star-shaped domain is contractible.



Integration in R3
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Curves: A curve is parametrized by a continuous function of one parameter r : [a, b]→Rn

dr =


dx

dy
dz


 = D(r) dt = r′dt is tangent to the curve at r: Unit length: |dr| =

√
dx2 + dy2 + dz2

Integration of a vector field (a work form) along a curve:
∫

F · dr =
∫

Fx dx + Fy dy + Fz dz

Integration of a scalar field along a curve:
∫

f |dr| Special case: arc length
∫

|dr|

Surfaces: A surface is parametrized by a continuous function Φ of two parameters u, v.

dS =


dy dz

dz dx
dx dy


 =


det (D(y, z))

det (D(z, x))
det (D(x, y))


 du dv =

(
∂Φ
∂u

× ∂Φ
∂v

)
du dv is ⊥ to the surface: Unit area: |dS|

Integration of a vector field (a flux form) through a surface:
∫

F · dS =
∫

Fx dy dz + Fy dz dx + Fz dx dy

Integration of a scalar field on a surface:
∫

f |dS| Special case: surface area
∫

|dS|

Solids: A solid is parametrized by a continuous function Ψ of three parameters u, v, w.

dV = dx dy dz = det (D(Ψ)) du dv dw =
(

∂Ψ
∂u

∂Ψ
∂v

∂Ψ
∂w

)
du dv dw Unit volume: |dV |

Integration of a scalar field (a density form) over a volume:
∫

fdV =
∫

f dx dy dz

Fundamental Theorem of Calculus:

If ω is a smooth n-form on an n-dimensional domain Ω with smooth boundary ∂Ω, then
∫

Ω

dω =
∫

∂Ω

ω

Famous special cases:

Barrow’s rule 3 (incl. F.T.C. for R):
∫

∇f · dr = f(b) − f(a)

Stokes’ theorem 4 (incl. Green’s theorem in the plane):
∫ ∫

D

(∇× F ) · dS =
∫

∂D

F · dr

Gauss-Ostrogradski divergence theorem:
∫ ∫ ∫

B

(∇ · F ) dV =
∫ ∫

∂B

F · dS

3Isaac Barrow (1630–1677) was the first to recognize that integration and differentiation were inverse operations. In 1669 Barrow resigned as
Lucasian professor of mathematics at Cambridge in favour of his pupil Newton.

4This theorem first appeared in a letter of July 2, 1850 from William Thomson (1824–1907) (Baron Kelvin of Largs, 1892) to George Gabriel
Stokes (1819–1903), Lucasian Professor of Mathematics at Cambridge (1849), who included it in his next exam.


