Differentiation in \mathbf{R}^{3}

(c) 1996 D. Gokhman

Differentials: Given $f(r)$ on \mathbf{R}^{3} and a point r_{0} let $\Delta r=r-r_{0}$. The differential $d f$ is the linear function of Δr whose graph is tangent to the graph of $w=f(r)$ at r_{0}. If we choose the coordinate projections as the basis for the vector space of linear maps of Δr, then we can expand $d f$ in this basis. We denote the coordinate projections by $d x, d y, d z$ (e.g. $d y(\Delta r)=\Delta y)$. The coefficients are called the partial derivatives of f at r_{0} and we get $d f=f_{x} d x+f_{y} d y+f_{z} d z=D(f) d r$
Forms: A linear function of Δr that also depends on r_{0} (from now on we will drop the subscript) is called a 1 -form. Thus, $d f$ is a 1 -form. Higher degree forms are multilinear alternating functions. An n-form is a function of n-variables, linear in each variable, such that interchanging variables produces a minus sign (in general, a permutation of the variables gives its parity). For example, $\Delta r_{1}, \Delta r_{2} \mapsto \Delta y_{1} \Delta z_{2}-\Delta y_{2} \Delta z_{1}=\operatorname{det}\left(\begin{array}{cc}\Delta y_{1} & \Delta y_{2} \\ \Delta z_{1} & \Delta z_{2}\end{array}\right)$ is a 2-form denoted by $d y d z$.
The vector space of all n-forms is denoted Λ^{n}. The table below shows cartesian expansions of n-forms on \mathbf{R}^{3} :

degree	name	cartesian coordinate form	$\operatorname{dim} \Lambda^{n}$
0-form	function	$f=f(x, y, z)$	1
1-form	work form	$\omega=A(x, y, z) d x+B(x, y, z) d y+C(x, y, z) d z$	3
2-form	flux form	$\varphi=P(x, y, z) d y d z+Q(x, y, z) d z d x+R(x, y, z) d x d y$	3
3-form	density form	$\rho=f(x, y, z) d x d y d z$	1

Products: In the above example $d y d z=-d z d y$. Also $d x d x=0$. These are general principles which we can apply to multiplication of forms. Famous vector products are special cases of this multiplication.

product of forms	vector interpretation
$u v=\left(u_{x} d x+u_{y} d y+u_{z} d z\right)\left(v_{x} d y d z+v_{y} d z d x+v_{z} d x d y\right)=\left(u_{x} v_{x}+u_{y} v_{y}+u_{z} v_{z}\right) d x d y d z$	dot product
$u v=\left(u_{x} d x+u_{y} d y+u_{z} d z\right)\left(v_{x} d x+v_{y} d y+v_{z} d z\right)=\left(u_{y} v_{z}-u_{z} v_{y}\right) d y d z+\left(u_{z} v_{x}-u_{x} v_{z}\right) d z d x$	cross product
$+\left(u_{x} v_{y}-u_{y} v_{x}\right) d x d y=\operatorname{det}\left(\begin{array}{cc}u_{y} & u_{z} \\ v_{y} & v_{z}\end{array}\right) d y d z+\operatorname{det}\left(\begin{array}{cc}u_{z} & u_{x} \\ v_{z} & v_{x}\end{array}\right) d z d x+\operatorname{det}\left(\begin{array}{cc}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right) d x d y$	
$u v w=\operatorname{det}\left(\begin{array}{ccc}u_{x} & u_{y} & u_{z} \\ v_{x} & v_{y} & v_{z} \\ w_{x} & w_{y} & w_{z}\end{array}\right) d x d y d z$	triple product

Differentials of n-forms: We extend the definition of d from 0 -forms to n-forms by imposing the rules of differentiation

linearity		product rule	
$d c=0$	$d(\omega+\eta)=d \omega+d \eta$	$d(\omega \eta)=d \omega \eta+(-1)^{\operatorname{deg} \omega} \omega d \eta$	$d(d(\omega))=0$

The tables below show d of various forms; the correspoding vector differential operators, where we use the del operator $\nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ and the usual vector products, except that the partials are applied; and some of the vector versions of the rules.

differential	vector interpretation
$d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z$	$\operatorname{grad} f=D(f)=\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$
$d \omega=d(A d x+B d y+C d z)=\left(\frac{\partial C}{\partial y}-\frac{\partial B}{\partial z}\right) d y d z$	$\operatorname{curl} \Psi=\operatorname{rot} \Psi=\nabla \times \Psi$
$+\left(\frac{\partial A}{\partial z}-\frac{\partial C}{\partial x}\right) d z d x+\left(\frac{\partial B}{\partial x}-\frac{\partial A}{\partial y}\right) d x d y$	$=\left(\frac{\partial \Psi_{z}}{\partial y}-\frac{\partial \Psi_{y}}{\partial z}, \frac{\partial \Psi_{x}}{\partial z}-\frac{\partial \Psi_{z}}{\partial x}, \frac{\partial \Psi_{y}}{\partial x}-\frac{\partial \Psi_{x}}{\partial y}\right)$
$d \varphi=d(P d y d z+Q d z d x+R d x d y)$ $=\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d x d y d z$	$\operatorname{div} \Phi=\nabla \cdot \Phi=\frac{\partial \Phi_{x}}{\partial x}+\frac{\partial \Phi_{y}}{\partial y}+\frac{\partial \Phi_{z}}{\partial z}$

$\nabla(f+g)=\nabla f+\nabla g$
$\nabla \times\left(\Psi_{1}+\Psi_{2}\right)=\nabla \times \Psi_{1}+\nabla \times \Psi_{2}$
$\nabla \cdot\left(\Phi_{1}+\Phi_{2}\right)=\nabla \cdot \Phi_{1}+\nabla \cdot \Phi_{2}$

$\nabla(f g)=(\nabla f) g+f(\nabla g)$
$\nabla \times(f \Psi)=(\nabla f) \times \Psi+f(\nabla \times \Psi)$
$\nabla \cdot\left(\Psi_{1} \times \Psi_{2}\right)=\left(\nabla \times \Psi_{1}\right) \cdot \Psi_{2}-\Psi_{1} \cdot\left(\nabla \times \Psi_{2}\right)$
$\nabla \cdot(f \Phi)=(\nabla f) \cdot \Phi+f(\nabla \cdot \Phi)$
:---
$\nabla \cdot(\nabla \times \Phi)=0$

Poincaré's lemma: ${ }^{1}$ For contractible ${ }^{2}$ domains we have a converse to $d(d(\omega))=0$, namely if $d \varphi=0$, then there is ω such that $d \omega=\varphi$. Famous special cases of this say that an irrotational (conservative) vector field has a potential and a divergence-free vector field has a vector potential

[^0]
Integration in \mathbf{R}^{3}

© 1996 D. Gokhman
Curves: A curve is parametrized by a continuous function of one parameter $r:[a, b] \rightarrow \mathbf{R}^{n}$

$d r=\left(\begin{array}{l}d x \\ d y \\ d z\end{array}\right)=D(r) d t=r^{\prime} d t$ is tangent to the curve at $r: \underset{a}{\int} \quad \int_{d r}^{b}$ Unit length: $|d r|=\sqrt{d x^{2}+d y^{2}+d z^{2}}$
Integration of a vector field (a work form) along a curve: $\int F \cdot d r=\int F_{x} d x+F_{y} d y+F_{z} d z$
Integration of a scalar field along a curve: $\int f|d r| \quad$ Special case: arc length $\int|d r|$
Surfaces: A surface is parametrized by a continuous function Φ of two parameters u, v.

Integration of a vector field (a flux form) through a surface: $\int F \cdot d S=\int F_{x} d y d z+F_{y} d z d x+F_{z} d x d y$
Integration of a scalar field on a surface: $\int f|d S| \quad$ Special case: surface area $\int|d S|$
Solids: A solid is parametrized by a continuous function Ψ of three parameters u, v, w.

$d V=d x d y d z=\operatorname{det}(D(\Psi)) d u d v d w=\left(\frac{\partial \Psi}{\partial u} \frac{\partial \Psi}{\partial v} \frac{\partial \Psi}{\partial w}\right) d u d v d w$
Integration of a scalar field (a density form) over a volume: $\int f d V=\int f d x d y d z$

Fundamental Theorem of Calculus:

If ω is a smooth n-form on an n-dimensional domain Ω with smooth boundary $\partial \Omega$, then $\int_{\Omega} d \omega=\int_{\partial \Omega} \omega$
Famous special cases:
Barrow's rule ${ }^{3}$ (incl. F.T.C. for \mathbf{R}): $\int \nabla f \cdot d r=f(b)-f(a)$
Stokes' theorem ${ }^{4}$ (incl. Green's theorem in the plane): $\iint_{D}(\nabla \times F) \cdot d S=\int_{\partial D} F \cdot d r$
Gauss-Ostrogradski divergence theorem: $\iiint_{B}(\nabla \cdot F) d V=\iint_{\partial B} F \cdot d S$

[^1]
[^0]: ${ }^{1}$ Due to Vito Volterra (1860-1940).
 2 A space is contractible means the identity map on this space is homotopic to the constant map. Roughly speaking this means that the space is continuously deformable to a point. Since various "holes" in space obstruct such a deformation, a contractible space can be thought of as lacking holes. A star-shaped domain is contractible.

[^1]: ${ }^{3}$ Isaac Barrow (1630-1677) was the first to recognize that integration and differentiation were inverse operations. In 1669 Barrow resigned as Lucasian professor of mathematics at Cambridge in favour of his pupil Newton.
 ${ }^{4}$ This theorem first appeared in a letter of July 2, 1850 from William Thomson (1824-1907) (Baron Kelvin of Largs, 1892) to George Gabriel Stokes (1819-1903), Lucasian Professor of Mathematics at Cambridge (1849), who included it in his next exam.

