Linear algebra glossary

Vector space: A vector space V is a nonempty set with addition and scalar multiplication.
The operations must satisfy certain axioms for arbitrary vectors u, v, w in V and numbers a, b.
Closure: $u+v$ and $a u$ are in V
Commutative: $u+v=v+u$
Associative: $u+(v+w)=(u+v)+w$ and $(a b) u=a(b u)$
Zero: there exists a zero vector 0 such that $u+0=u$
Additive inverse: there exists $-u$ such that $u+(-u)=0$
Distributive: $a(u+v)=a u+a v$ and $(a+b) u=a u+b u$
Unitary: $1 u=u$
Superposition principle I: If $v_{1}, \ldots v_{n}$ are vectors in V, then any linear combination $c_{1} v_{1}+\ldots+c_{n} v_{n}$ is in V.
Subspace: A subspace of V is a nonempty subset H of V that is closed under addition and scalar multiplication.
Span: If S is a subset of V, the span of S is the set (in fact, subspace) of all linear combinations of vectors in S.
Linear map: A linear map is a function between vector spaces $T: V \rightarrow W$ that preserves addition and scalar multiplication. Specifically $T(u+v)=T(u)+T(v)$ and $T(a u)=a T(u)$.

Superposition principle II: If T is linear, then $T\left(c_{1} v_{1}+\ldots+c_{n} v_{n}\right)=c_{1} T\left(v_{1}\right)+\ldots+c_{n} T\left(v_{n}\right)$
Linear independence: A sequence of vectors $v_{1}, \ldots v_{n}$ is linearly independent means that the homogeneous vector equation $c_{1} v_{1}+\ldots+c_{n} v_{n}=0$ has only the trivial solution $c_{1}=\ldots=c_{n}=0$.

Basis: A basis for V is a linearly independent sequence of vectors $v_{1}, \ldots v_{n}$ that spans V.
Dimension: Dimension of V is the (unique) number of elements in any basis for V.
Coordinates: If v is a vector in V and $\mathcal{B}=\left\{b_{1}, \ldots b_{n}\right\}$ is a basis for V, the coordinate vector $[v]_{\mathcal{B}}$ consists of the coefficients (weights) $c_{1}, \ldots c_{n}$ of the unique expansion $v=c_{1} b_{1}+\ldots+c_{n} b_{n}$.

