Intermediate Value Theorem

This is an important topological result often used in establishing existence of solutions to equations. It says that a continuous function attains all values between any two values. A key ingredient is completeness of the real line.

Theorem (IVT): Suppose $f: [a, b] \to \mathbf{R}$ is continuous and c is between f(a) and f(b). Then there exists s between a and b such that f(s) = c.

Proof: Without loss of generality we may assume f(a) < c < f(b). Let $S = \{x \in [a, b]: f(x) < c\}$. Since $a \in S, S$ is nonempty, so since S is bounded above, by completeness of **R**, S has a supremum s. Since any neighborhood of s contains points of both S and its complement (i.e. points where f is greater and smaller than c) and f is continuous at s, f(s) = c.

Babylonian bisection: Another proof can be obtained constructively as follows. Again assume f(a) < c < f(b). Let $I_1 = [a, b]$ and let x_1 be the midpoint of I_1 . If $f(x_1) = c$ we are done. If $f(x_1) < c$ let $I_2 = [x_1, b]$. Otherwise let $I_2 = [a, x_1]$ and proceed by induction. If we never stop, let (a_i) and (b_i) be the sequences of left and right endpoints of I_i . Then

- (a) (a_i) is increasing and (b_i) is decreasing
- (b) $f(a_i) < c < f(b_j)$
- (c) $I_0 \supset I_1 \supset ...,$
- (d) $b_i a_i = 2^{-i}(b a)$

By (a) and (c), (a_i) is monotone and bounded, so has a limit s. Since f is continuous at s, we have $f(a_i) \to f(s)$. By (b), $f(s) \leq c$. Similarly (b_i) has a limit $t \geq s$ and $f(t) \geq c$. By (d), $s - t \leq 2^i(b - a) \to 0$, so by the squeeze law s = t. Thus f(t) = f(s) = 0.

Theorem: If $f:[a,b] \rightarrow \mathbf{R}$ is continuous and 1-1, then f is strictly monotone.

Proof: Since f is 1-1, it is enough to show monotone. Without loss of generality we may assume that f(a) < f(b) and show that f is increasing. If not, there exist x < y in [a, b] such that f(x) > f(y). If f(x) > f(b), we have a "switch": three points $\{a, x, b\}$ where the extreme value of f occurs at the middle point. Pick c between the extreme value and the closest other value (in our case, pick c between f(x) and f(b)) and apply IVT to obtain s_1 and s_2 on opposite sides of the middle point such that $f(s_1) = f(s_2) = c$. Since f is 1-1, this is a contradiction. If $f(x) \le f(b)$, we again have a switch, this time $\{x, y, b\}$, and a contradiction.