Green's identities

(George Green, 1793–1841)

[0,2] with $f = \varphi$ and $p = \nabla \psi$: $\nabla \cdot (\varphi \nabla \psi) = \varphi \nabla^2 \psi + (\nabla \varphi) \cdot (\nabla \psi)$

I. $\int_{\Omega} (\varphi \nabla^2 \psi + \nabla \varphi \cdot \nabla \psi) \, dV = \int_{\partial \Omega} \varphi (\nabla \psi) \cdot \, ds$

II.
$$\int_{\Omega} (\varphi \nabla^2 \psi - \psi \nabla^2 \varphi) \, dV = \int_{\partial \Omega} (\varphi \nabla \psi - \psi \nabla \varphi) \cdot \, ds$$

III.
$$\varphi = -\frac{1}{4\pi} \int_{\Omega} \frac{\nabla^2 \varphi}{|\rho|} dV + \frac{1}{4\pi} \int_{\partial \Omega} \left[\frac{1}{|\rho|} \nabla \varphi - \varphi \nabla \frac{1}{|\rho|} \right] \cdot ds$$

Uniqueness Theorem: A harmonic C^1 function is uniquely determined up to an additive constant by the values of its normal derivative at the boundary.

Proof: Green's first identity with harmonic $\varphi = \psi$ gives

$$\int_{\Omega} (\nabla \varphi)^2 \, dV = \int_{\partial \Omega} \varphi(\nabla \varphi) \cdot \, ds$$

Thus, if the normal derivative of φ vanishes at the boundary, $\varphi = \text{const.}$

Representation Theorem: Any harmonic C^1 function is representable as a superposition of potentials due to distributions of sources and doublets.

Proof: Green's third identity.