Fundamental Theorem of Calculus for curve integrals

The Fundamental Theorem of Calculus (F.T.C.) is a general statement about the relationship between integration and differentiation. Roughly speaking they are compositional inverses. For functions of a single variable we have

$$
\text { (i) } \int_{a}^{x} d f=\int_{a}^{x} f^{\prime}(t) d t=f(x)-f(a), \quad \text { (ii) } \frac{d}{d x} \int_{a}^{x} g(t) d t=g(x) \text {. }
$$

Sketch of proof: (i) Let $a=a_{0}<a_{1}<\ldots<a_{n}=x$ be a partition of $[a, x]$ and choose t_{i} is each subinterval $\left(a_{i-1} \leq t_{i} \leq a_{i}\right)$. Then we approximate $f^{\prime}\left(t_{i}\right)$ by $\Delta f / \Delta t=\left(f\left(a_{i}\right)-f\left(a_{i-1}\right)\right) /\left(a_{i}-a_{i-1}\right)$ and cancel most terms in the Riemann sum

$$
\sum_{i=1}^{n} f^{\prime}\left(t_{i}\right)\left(a_{i}-a_{i-1}\right) \approx \sum_{i=1}^{n} f\left(a_{i}\right)-f\left(a_{i-1}=f(x)-f\left(a_{n-1}\right)+f\left(a_{n-1}\right)-f\left(a_{n-2}\right)+\ldots f\left(a_{1}\right)-f(a)=f(x)-f(a)\right.
$$

(ii) Let h be small. Then the numerator of the difference quotient $\int_{a}^{x+h} g(t) d t-\int_{a}^{x} g(t) d t=\int_{x}^{x+h} g(t) d t \approx g(x) h$.
F.T.C. for curves: F.T.C. holds almost verbatim for functions of several variable and integration along curves:

$$
\text { (i) } \int_{a}^{x} d f=\int_{a}^{x} D(f) \cdot d s=f(x)-f(a), \quad \text { (ii) } D\left(\int_{a}^{x} F \cdot d s\right)=F(x)
$$

The main exception is that part (ii) makes sense only for vector fields whose integration is path independent (cf. Def. 6.3.1, p. 395), because otherwise the integral is not solely a function of the vector variable x. Note that path independence follows immediately in part (i) (cf. Th. 6.3.3, pp. 398, 404).

Sketch of proof: (i) Let $s:[\alpha, \beta] \rightarrow \mathbf{R}^{n}$ be a smooth parametrized curve with $s(\alpha)=a$ and $s(\beta)=x$. Then $f(s(t))$ is a function of a single variable t, so by the usual F.T.C. (i)

$$
\int d f=\int_{\alpha}^{\beta} d(f(s(t))=f(s(\beta))-f(s(\alpha))=f(x)-f(a)
$$

(ii) It is enough to show that the partial derivatives of the integral are precisely the components of F (if F is continuous then so are the partial derivatives of the integral, so its differentiability follows). Let us take partial derivative with respect to x_{1} (the others are similar). If the integral is path independent, then we may choose a convenient path, whose last bit is a straight line segment along the x_{1} axis, parametrized by $s(t)=\left(t, b_{2}, \ldots b_{n}\right), b_{1} \leq t \leq x_{1}$.

Since $d s=(d t, 0, \ldots 0), F \cdot d s=F_{1} d t$. Just as the path is in two parts, so is the integral. The first part is independent of x_{1}, so differentiates to 0 . Applying the usual F.T.C. (ii) to the second part we obtain

$$
D_{1}\left(\int_{a}^{x} F \cdot d s\right)=D_{1}\left(\int_{a}^{b} F \cdot d s+\int_{b}^{x} F \cdot d s\right)=D_{1}\left(\int_{b_{1}}^{x_{1}} F_{1}(s(t)) d t\right)=F_{1}\left(s\left(x_{1}\right)\right)=F_{1}(x)
$$

Reference: S. J. Colley, Vector Calculus, Prentice-Hall, 1999.

