Fundamental theorem of calculus：

Given a k dimensional chain Ω and a degree $k-1$ differential form ω ，we have $\int_{\partial \Omega} \omega=\int_{\Omega} d \omega$ ．
Proof of FTC for the k dimensional unit box：
Since the integral and the exterior derivative are linear，we may assume $\omega=a(x) \widehat{d x}_{i}$ ．Then $d \omega=(-1)^{i+1} \partial_{i} a d V$ ．
Only the 2 faces orthogonal to the i－th axis contribute to

$$
\int_{\partial \Omega} \omega=(-1)^{i}\left[\int_{F_{i 0}} \omega-\int_{F_{i 1}} \omega\right] .
$$

On the other hand，by Fubini＇s theorem and the univariate FTC，

$$
\int_{\Omega} d \omega=(-1)^{i+1} \int_{\Omega} \partial_{i} a d V=(-1)^{i+1} \int_{\Omega} \partial_{i} a d V=(-1)^{i+1}\left[\int_{F_{i 1}} \omega-\int_{F_{i 0}} \omega\right] .
$$

Pullbacks：Given $\varphi: U \rightarrow \Omega$ ，define $\varphi^{*} f=f \circ \varphi, \varphi^{*} d x_{i}=d \varphi_{i}$ ．and extend to all forms by
米 $\varphi^{*}(\alpha+\omega)=\varphi^{*} \alpha+\varphi^{*} \omega$
粦 $\varphi^{*}(f \omega)=(f \circ \varphi) \varphi^{*} \omega$
粦 $\varphi^{*}(\alpha \wedge \omega)=\varphi^{*} \alpha \wedge \varphi^{*} \omega$
Applying $\varphi^{*} \omega$ at a point u in U to k vectors is the same as applying ω to the images of the vectors： $\left(\varphi^{*} \omega\right)_{u}\left[v_{1}, \ldots v_{k}\right]=\omega_{\varphi(u)}\left[d \varphi_{u}\left(v_{1}\right), \ldots d \varphi_{u}\left(v_{k}\right)\right]$ ．
Furthermore，
米 $\int_{\Omega} \omega=\int_{U} \varphi^{*} \omega$
粦 Chain rule：$d\left(\varphi^{*} \omega\right)=\varphi^{*}(d \omega)$［Proof by induction on k ．］
Proof of FTC for a k cell：Parametrize the cell Ω by $\varphi: I^{k} \rightarrow \Omega$ ．Then $\int_{\Omega} d \omega=\int_{I^{k}} \varphi^{*}(d \omega)=\int_{I^{k}} d\left(\varphi^{*} \omega\right)=\int_{\partial I^{k}} \varphi^{*} \omega=\sum_{i=1}^{k}(-1)^{i}\left[\int_{F_{i 0}} \varphi^{*} \omega-\int_{F_{i 1}} \varphi^{*} \omega\right]=\sum_{i=1}^{k}(-1)^{i}\left[\int_{\varphi\left(F_{i 0}\right)} \omega-\int_{\varphi\left(F_{i 1}\right)} \omega\right]=\int_{\partial \Omega} \omega$.

Proof for an oriented cellular region：

Reference：

C．H．Edwards，Jr．，Advanced calculus of several variables，Academic Press， 1973 （Dover，1994）

