Fundamental Theorem of Algebra

Dmitry Gokhman

Department of Mathematics
The University of Texas at San Antonio
http://math.utsa.edu/~gokhman

Outline

Outline

(1) Introduction

Dmitry Gokhman
Fundamental Theorem of Algebra

Outline

(1) Introduction
(2) Complex numbers

Dmitry Gokhman
Fundamental Theorem of Algebra

Outline

(9) Introduction
(2) Complex numbers
(3) Fundamental Theorem of Algebra

Dmitry Gokhman
Fundamental Theorem of Algebra

Introduction

No polynomial of the type $X^{4}+a^{4}$ (with $a \neq 0$) can be factored.

- Gottfried Leibniz (1702) (he was wrong)

Introduction

No polynomial of the type $X^{4}+a^{4}$ (with $a \neq 0$) can be factored.

- Gottfried Leibniz (1702) (he was wrong)
- Intersections of curves \longrightarrow roots of polynomials

Introduction

No polynomial of the type $X^{4}+a^{4}$ (with $a \neq 0$) can be factored.

- Gottfried Leibniz (1702) (he was wrong)
- Intersections of curves \longrightarrow roots of polynomials
- Quadratics: $z^{2}-2 m z+c=0$

$$
\begin{aligned}
& z^{2}-2 m z+m^{2}=m^{2}-c \quad(z-m)^{2}=m^{2}-c \\
& z=m \pm \sqrt{m^{2}-c}
\end{aligned}
$$

Introduction

No polynomial of the type $X^{4}+a^{4}$ (with $a \neq 0$) can be factored.

- Gottfried Leibniz (1702) (he was wrong)
- Intersections of curves \longrightarrow roots of polynomials
- Quadratics: $z^{2}-2 m z+c=0$

$$
\begin{aligned}
& z^{2}-2 m z+m^{2}=m^{2}-c \quad(z-m)^{2}=m^{2}-c \\
& z=m \pm \sqrt{m^{2}-c}
\end{aligned}
$$

- Cubics: $z^{3}+3 a z^{2}+b z+c=0$
(Scipione del Ferro, Niccolò Fontana (Tartaglia), XVI)
To eliminate z^{2}, shift the inflection point $z=-a$ to the origin:

$$
\begin{aligned}
& (z-a)^{3}+3 a(z-a)^{2}+b(z-a)+c=0 \\
& z^{3}-3 z^{2} a+3 z a^{2}-a^{3}+3 a\left(z^{2}-2 z a+a^{2}\right)+b(z-a)+c=0
\end{aligned}
$$

- Depressed cubics: $z^{3}=3 p z+2 q$

$$
\begin{aligned}
& (s+t)^{3}=3 p(s+t)+2 q \\
& s^{3}+3 s^{2} t+3 s t^{2}+t^{3}=3 p(s+t)+2 q \\
& s^{3}+3 s t(s+t)+t^{3}=3 p(s+t)+2 q \\
& s^{3}+t^{3}=2 q \quad s t=p \quad \Rightarrow t=p / s \\
& s^{3}+p^{3} / s^{3}=2 q \quad\left(s^{3}\right)^{2}-2 q s^{3}+p^{3}=0 \\
& s^{3}=q \pm \sqrt{q^{2}-p^{3}} \quad t^{3}=q \mp \sqrt{q^{2}-p^{3}} \\
& z=\sqrt[3]{q+\sqrt{q^{2}-p^{3}}}+\sqrt[3]{q-\sqrt{q^{2}-p^{3}}}
\end{aligned}
$$

- Depressed cubics: $z^{3}=3 p z+2 q$

$$
z=\sqrt[3]{q+\sqrt{q^{2}-p^{3}}}+\sqrt[3]{q-\sqrt{q^{2}-p^{3}}}
$$

- Rafaello Bombelli's example: $z^{3}=15 z+4 \quad(p=5, q=2)$

$$
\begin{aligned}
& z=\sqrt[3]{2+\sqrt{-121}}+\sqrt[3]{2-\sqrt{-121}} \\
& z=\sqrt[3]{2+11 i}+\sqrt[3]{2-11 i} \quad \text { where } i=\sqrt{-1} \\
& (a+i b) \pm\left(a^{\prime}+i b^{\prime}\right)=\left(a \pm a^{\prime}\right)+i\left(b \pm b^{\prime}\right) \\
& (a+i b)\left(a^{\prime}+i b^{\prime}\right)=a a^{\prime}+i a b^{\prime}+i b a^{\prime}+i^{2} b b^{\prime} \\
& =\left(a a^{\prime}-b b^{\prime}\right)+i\left(a b^{\prime}+b a^{\prime}\right) \\
& (2 \pm i)^{3}=8 \pm 12 i+6 i^{2} \pm i^{3}=8 \pm 12 i-6 \mp i=2 \pm 11 i \\
& \therefore z=(2+11 i)+(2-11 i)=4
\end{aligned}
$$

- Higher degree

Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

Quinties: N ' o genteral a'getoratio solution for degree

Dmitry Gokhman
Fundamental Theorem of Algebra

- Higher degree
- Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)
Quintics: No general algebraic solution for degree ≥ 5.
(Paolo Ruffini 1799, Niels Abel 1824)

- Higher degree
- Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

- Quintics: No general algebraic solution for degree ≥ 5.
(Paolo Ruffini 1799, Niels Abel 1824)
- Higher degree
- Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

- Quintics: No general algebraic solution for degree ≥ 5.
(Paolo Ruffini 1799, Niels Abel 1824)
- Splitting: $p(a)=0 \Leftrightarrow p(X)=(X-a) q(X)$ for some $q(X)$.
- Higher degree
- Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

- Quintics: No general algebraic solution for degree ≥ 5.
(Paolo Ruffini 1799, Niels Abel 1824)
- Splitting: $p(a)=0 \Leftrightarrow p(X)=(X-a) q(X)$ for some $q(X)$.
- By long division $p(X)=(X-a) q(X)+r$.

Since $\operatorname{deg} r<\operatorname{deg}(X-a)=1, r$ is constant.

- Higher degree
- Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

- Quintics: No general algebraic solution for degree ≥ 5.
(Paolo Ruffini 1799, Niels Abel 1824)
- Splitting: $p(a)=0 \Leftrightarrow p(X)=(X-a) q(X)$ for some $q(X)$.
- By long division $p(X)=(X-a) q(X)+r$.

Since $\operatorname{deg} r<\operatorname{deg}(X-a)=1, r$ is constant.

- Plug in $X=a$ to obtain $r=0$.
- Higher degree
- Quartics: Lodovico Ferrari (1540)

Cubics and quartics: Girolamo Cardano, Ars Magna (1545)

- Quintics: No general algebraic solution for degree ≥ 5.
(Paolo Ruffini 1799, Niels Abel 1824)
- Splitting: $p(a)=0 \Leftrightarrow p(X)=(X-a) q(X)$ for some $q(X)$.
- By long division $p(X)=(X-a) q(X)+r$.

Since $\operatorname{deg} r<\operatorname{deg}(X-a)=1, r$ is constant.

- Plug in $X=a$ to obtain $r=0$.
- The largest m such that $p(X)$ is a multiple of $(X-a)^{m}$ is called multiplicity.

Complex numbers

$\mathbf{C}=\mathbf{R}[i]=\mathbf{R}[X] /\left\langle X^{2}+1\right\rangle$
Multiples of $X^{2}+1$ form a maximal ideal of the polynomial ring
$\mathbf{R}[X]$. The factor ring \mathbf{C} is a field.
Conente (shiftel) of thic nuinminal iden
classes, where two polynomials are considered equivalent when

Complex numbers

$\left.\mathbf{C}=\mathbf{R}[i]=\mathbf{R}[X] /<X^{2}+1\right\rangle$

- Multiples of $X^{2}+1$ form a maximal ideal of the polynomial ring $\mathbf{R}[X]$. The factor ring \mathbf{C} is a field.

Complex numbers

$\left.\mathbf{C}=\mathbf{R}[i]=\mathbf{R}[X] /<X^{2}+1\right\rangle$

- Multiples of $X^{2}+1$ form a maximal ideal of the polynomial ring $\mathbf{R}[X]$. The factor ring \mathbf{C} is a field.
- Cosets (shifts) of this principal ideal $<X^{2}+1>$ are equivalence classes, where two polynomials are considered equivalent when their difference is in the ideal, i.e. a multiple of $X^{2}+1$.

Complex numbers

$\mathbf{C}=\mathbf{R}[i]=\mathbf{R}[X] /\left\langle X^{2}+1\right\rangle$

- Multiples of $X^{2}+1$ form a maximal ideal of the polynomial ring $\mathbf{R}[X]$. The factor ring \mathbf{C} is a field.
- Cosets (shifts) of this principal ideal $<X^{2}+1>$ are equivalence classes, where two polynomials are considered equivalent when their difference is in the ideal, i.e. a multiple of $X^{2}+1$.
- Since $X^{2} \sim-1, X^{3} \sim-X, X^{4} \sim 1$, etc., each coset has a unique representative of the form $a+X b$. The coset is denoted by $z=a+i b$.
where \bar{z} is the complex conjugate and $|z|$ is the magnitude.

Complex numbers

$\left.\mathbf{C}=\mathbf{R}[i]=\mathbf{R}[X] /<X^{2}+1\right\rangle$

- Multiples of $X^{2}+1$ form a maximal ideal of the polynomial ring $\mathbf{R}[X]$. The factor ring \mathbf{C} is a field.
- Cosets (shifts) of this principal ideal $<X^{2}+1>$ are equivalence classes, where two polynomials are considered equivalent when their difference is in the ideal, i.e. a multiple of $X^{2}+1$.
- Since $X^{2} \sim-1, X^{3} \sim-X, X^{4} \sim 1$, etc., each coset has a unique representative of the form $a+X b$. The coset is denoted by $z=a+i b$.
- $z \pm z^{\prime}=(a+i b) \pm\left(a^{\prime}+i b^{\prime}\right)=\left(a \pm a^{\prime}\right)+i\left(b \pm b^{\prime}\right)$ $z z^{\prime}=(a+i b)\left(a^{\prime}+i b^{\prime}\right)=\left(a a^{\prime}-b b^{\prime}\right)+i\left(a b^{\prime}+b a^{\prime}\right)$
$z \bar{z}=(a+i b)(a-i b)=a^{2}+b^{2}=|z|^{2}$
where \bar{z} is the complex conjugate and $|z|$ is the magnitude.
- Complex plane (Caspar Wessel 1799, Jean-Robert Argand 1806)

Polar coordinates: $z=a+i b=r(\cos \theta+i \sin \theta)=r e^{i \theta}$
(Roger Cotes 1714, Leonhard Euler 1748)
$e^{i \theta}=1+(i \theta)+\frac{1}{2!}(i \theta)^{2}+\frac{1}{3!}(i \theta)^{3}+\ldots=1+i \theta-\frac{1}{2!} \theta^{2}-\frac{i}{3!} \theta^{3}+\ldots$
$=\left(1-\frac{1}{2!} \theta^{2}+\ldots\right)+i\left(\theta-\frac{1}{3!} \theta^{3}+\ldots\right)=\cos \theta+i \sin \theta$
Our jewel. One of the most remarkable, almost astounding, formulas in all of mathematics.
— Richard Feynman.

- Complex plane (Caspar Wessel 1799, Jean-Robert Argand 1806)

Polar coordinates: $z=a+i b=r(\cos \theta+i \sin \theta)=r e^{i \theta}$
(Roger Cotes 1714, Leonhard Euler 1748)
$e^{i \theta}=1+(i \theta)+\frac{1}{2!}(i \theta)^{2}+\frac{1}{3!}(i \theta)^{3}+\ldots=1+i \theta-\frac{1}{2!} \theta^{2}-\frac{i}{3!} \theta^{3}+\ldots$
$=\left(1-\frac{1}{2!} \theta^{2}+\ldots\right)+i\left(\theta-\frac{1}{3!} \theta^{3}+\ldots\right)=\cos \theta+i \sin \theta$
Our jewel. One of the most remarkable, almost astounding, formulas in all of mathematics.
— Richard Feynman.

- Linear algebra: $\mathbf{C}=\left\{\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]:[a, b] \in \mathbf{R}^{2}\right\}$
$\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]\left[\begin{array}{rr}a^{\prime} & -b^{\prime} \\ b^{\prime} & a^{\prime}\end{array}\right]=\left[\begin{array}{ll}a a^{\prime}-b b^{\prime} & -a b^{\prime}-b a^{\prime} \\ b a^{\prime}+a b^{\prime} & -b b^{\prime}+a a^{\prime}\end{array}\right]$
$\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]=\left[\begin{array}{ll}r & 0 \\ 0 & r\end{array}\right]\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right] \quad$ (isotropic dilation + rotation)

- Complex multiplication

- Complex multiplication

- $z z^{\prime}=r(\cos \theta+i \sin \theta) r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)$

$$
\begin{aligned}
& =\left(r r^{\prime}\right)\left[\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right] \\
& =\left(r r^{\prime}\right)\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]
\end{aligned}
$$

- Complex multiplication
- $z z^{\prime}=r(\cos \theta+i \sin \theta) r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)$
$=\left(r r^{\prime}\right)\left[\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right]$
$=\left(r r^{\prime}\right)\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]$
- $z z^{\prime}=\left(r e^{i \theta}\right)\left(r^{\prime} e^{i \theta^{\prime}}\right)=\left(r r^{\prime}\right) e^{i\left(\theta+\theta^{\prime}\right)}$

Magnitudes multiply, phases add.

- Complex multiplication
- $z z^{\prime}=r(\cos \theta+i \sin \theta) r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)$
$=\left(r r^{\prime}\right)\left[\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right]$
$=\left(r r^{\prime}\right)\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]$
- $z z^{\prime}=\left(r e^{i \theta}\right)\left(r^{\prime} e^{i \theta^{\prime}}\right)=\left(r r^{\prime}\right) e^{i\left(\theta+\theta^{\prime}\right)}$

Magnitudes multiply, phases add.

- Complex powers $f(z)=z^{n}$
- Complex multiplication
- $z z^{\prime}=r(\cos \theta+i \sin \theta) r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)$

$$
=\left(r r^{\prime}\right)\left[\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right]
$$

$$
=\left(r r^{\prime}\right)\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]
$$

- $z z^{\prime}=\left(r e^{i \theta}\right)\left(r^{\prime} e^{i \theta^{\prime}}\right)=\left(r r^{\prime}\right) e^{i\left(\theta+\theta^{\prime}\right)}$

Magnitudes multiply, phases add.

- Complex powers $f(z)=z^{n}$
- $z^{2}=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$

Phase gets multiplied by n.

- Complex multiplication
- $z z^{\prime}=r(\cos \theta+i \sin \theta) r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)$

$$
=\left(r r^{\prime}\right)\left[\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right]
$$

$$
=\left(r r^{\prime}\right)\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]
$$

- $z z^{\prime}=\left(r e^{i \theta}\right)\left(r^{\prime} e^{i \theta^{\prime}}\right)=\left(r r^{\prime}\right) e^{i\left(\theta+\theta^{\prime}\right)}$

Magnitudes multiply, phases add.

- Complex powers $f(z)=z^{n}$
- $z^{2}=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$
- $z^{3}=(x+i y)^{3}=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)$

Phase gets multiplied by n.

- Complex multiplication
- $z z^{\prime}=r(\cos \theta+i \sin \theta) r^{\prime}\left(\cos \theta^{\prime}+i \sin \theta^{\prime}\right)$
$=\left(r r^{\prime}\right)\left[\cos \theta \cos \theta^{\prime}-\sin \theta \sin \theta^{\prime}+i\left(\sin \theta \cos \theta^{\prime}+\cos \theta \sin \theta^{\prime}\right)\right]$
$=\left(r r^{\prime}\right)\left[\cos \left(\theta+\theta^{\prime}\right)+i \sin \left(\theta+\theta^{\prime}\right)\right]$
- $z z^{\prime}=\left(r e^{i \theta}\right)\left(r^{\prime} e^{i \theta^{\prime}}\right)=\left(r r^{\prime}\right) e^{i\left(\theta+\theta^{\prime}\right)}$

Magnitudes multiply, phases add.

- Complex powers $f(z)=z^{n}$
- $z^{2}=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$
- $z^{3}=(x+i y)^{3}=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)$
- $z^{n}=\left(r e^{i \theta}\right)^{n}=r^{n} e^{i n \theta}$ (trig version: Abraham de Moivre 1722)

Phase gets multiplied by n.

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

```
Early attempts, assuming existence (incomplete
Jean-Baptiste le Rond d'Alembert (1746)
Leonhard Euler (1749)
Francois Daviet de Foncenex (1759)
Joseph-Louis Lagrange (1772),
Dinme Siman de I anlanen (1705)
James Wood (1798)
Cal Exiaduich Causs (:|799)
Jean-Robert Argand (1806)
```


Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Early attempts, assuming existence (incomplete $\ddot{\sim}$):

Jean-Baptiste le Rond d'Alembert (1746),
Leonhard Euler (1749),
Francois Daviet de Foncenex (1759),
Joseph-Louis Lagrange (1772),
Pierre-Simon de Laplace (1795).

[^0]
Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Early attempts, assuming existence (incomplete $\ddot{\sim}$):

Jean-Baptiste le Rond d'Alembert (1746),
Leonhard Euler (1749),
Francois Daviet de Foncenex (1759),
Joseph-Louis Lagrange (1772),
Pierre-Simon de Laplace (1795).

- James Wood (1798),

Carl Friedrich Gauss (1799),
Jean-Robert Argand (1806).

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Let $p(z)=a_{0}+a_{1} z+\ldots+a_{n-1} z^{n-1}+z^{n}$ belong to $\mathbf{C}[z]$. Assume p is never zero. Then $a_{0} \neq 0$ (otherwise $p(0)=0$).

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Let $p(z)=a_{0}+a_{1} z+\ldots+a_{n-1} z^{n-1}+z^{n}$ belong to $\mathbf{C}[z]$. Assume p is never zero. Then $a_{0} \neq 0$ (otherwise $p(0)=0$).
- For each r the image of the circle $\left\{z=r e^{i \theta}:-\pi<\theta \leq \pi\right\}$ is a loop in $\mathbf{C} \backslash\{0\}$. Let $\varphi(r)$ be the winding number w of this loop around the origin. Since φ is continuous and its image is discrete, φ is constant (you can't change the winding number without crossing the origin).

For small $|z|=r$, we have $p(z) \approx a_{0}$, so $\varphi(r)=0$.
For large r, the dominant term in $p(z)$ is z^{n}, so $\varphi(r)=n$.

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Let $p(z)=a_{0}+a_{1} z+\ldots+a_{n-1} z^{n-1}+z^{n}$ belong to $\mathbf{C}[z]$. Assume p is never zero. Then $a_{0} \neq 0$ (otherwise $p(0)=0$).
- For each r the image of the circle $\left\{z=r e^{i \theta}:-\pi<\theta \leq \pi\right\}$ is a loop in $\mathbf{C} \backslash\{0\}$. Let $\varphi(r)$ be the winding number w of this loop around the origin. Since φ is continuous and its image is discrete, φ is constant (you can't change the winding number without crossing the origin).
- For small $|z|=r$, we have $p(z) \approx a_{0}$, so $\varphi(r)=0$.

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Let $p(z)=a_{0}+a_{1} z+\ldots+a_{n-1} z^{n-1}+z^{n}$ belong to $\mathbf{C}[z]$. Assume p is never zero. Then $a_{0} \neq 0$ (otherwise $p(0)=0$).
- For each r the image of the circle $\left\{z=r e^{i \theta}:-\pi<\theta \leq \pi\right\}$ is a loop in $\mathbf{C} \backslash\{0\}$. Let $\varphi(r)$ be the winding number w of this loop around the origin. Since φ is continuous and its image is discrete, φ is constant (you can't change the winding number without crossing the origin).
- For small $|z|=r$, we have $p(z) \approx a_{0}$, so $\varphi(r)=0$.
- For large r, the dominant term in $p(z)$ is z^{n}, so $\varphi(r)=n$.

Fundamental Theorem of Algebra

Every non-constant complex polynomial has a root, and therefore, by induction, splits completely into linear factors.

- Let $p(z)=a_{0}+a_{1} z+\ldots+a_{n-1} z^{n-1}+z^{n}$ belong to $\mathbf{C}[z]$. Assume p is never zero. Then $a_{0} \neq 0$ (otherwise $p(0)=0$).
- For each r the image of the circle $\left\{z=r e^{i \theta}:-\pi<\theta \leq \pi\right\}$ is a loop in $\mathbf{C} \backslash\{0\}$. Let $\varphi(r)$ be the winding number w of this loop around the origin. Since φ is continuous and its image is discrete, φ is constant (you can't change the winding number without crossing the origin).
- For small $|z|=r$, we have $p(z) \approx a_{0}$, so $\varphi(r)=0$.
- For large r, the dominant term in $p(z)$ is z^{n}, so $\varphi(r)=n$.
- Since φ is constant, $n=0$.
- Complex conjugation: $a+i b \quad \mapsto \quad a-i b$

The flip with respect to the real axis $f(z)=\bar{z}$ is an automorphism of \mathbf{C} keeping exactly \mathbf{R} fixed.

A real polynomial splits into linear factors and quadratics

- Complex conjugation: $a+i b \quad \mapsto \quad a-i b$

The flip with respect to the real axis $f(z)=\bar{z}$ is an automorphism of \mathbf{C} keeping exactly \mathbf{R} fixed.

- A real polynomial splits into linear factors and quadratics without real roots (i.e. with negative discriminant).
 $0=\overline{p(z)}=\overline{a_{0}+a_{1} z+\ldots a_{n} z^{n}}=a_{0}+a_{1} \bar{z}+\ldots a_{n} \bar{z}^{n}=p(\bar{z})$ Thue, complov ronte nome in enniugate naire
- Complex conjugation: $a+i b \quad \mapsto \quad a-i b$

The flip with respect to the real axis $f(z)=\bar{z}$ is an automorphism of \mathbf{C} keeping exactly \mathbf{R} fixed.

- A real polynomial splits into linear factors and quadratics without real roots (i.e. with negative discriminant).
- Suppose $p(X)$ is a real polynomial. Conjugate $p(z)=0$:

$$
0=\overline{p(z)}=\overline{a_{0}+a_{1} z+\ldots a_{n} z^{n}}=a_{0}+a_{1} \bar{z}+\ldots a_{n} \bar{z}^{n}=p(\bar{z})
$$

Thus, complex roots come in conjugate pairs.

- Complex conjugation: $a+i b \quad \mapsto \quad a-i b$

The flip with respect to the real axis $f(z)=\bar{z}$ is an automorphism of \mathbf{C} keeping exactly \mathbf{R} fixed.

- A real polynomial splits into linear factors and quadratics without real roots (i.e. with negative discriminant).
- Suppose $p(X)$ is a real polynomial. Conjugate $p(z)=0$:

$$
0=\overline{p(z)}=\overline{a_{0}+a_{1} z+\ldots a_{n} z^{n}}=a_{0}+a_{1} \bar{z}+\ldots a_{n} \bar{z}^{n}=p(\bar{z})
$$

Thus, complex roots come in conjugate pairs.

- $(X-(a+i b))(X-(a-i b))=(X-a)^{2}+b^{2}$

Argument principle

The number of zeros (counted with multiplicities) of $f(z)$ inside a loop is the winding number w of the image of the loop under f with respect to the origin.
(if f has poles, they need to be counted with negative mutliplicities)

Argument principle

The number of zeros (counted with multiplicities) of $f(z)$ inside a loop is the winding number w of the image of the loop under f with respect to the origin.
(if f has poles, they need to be counted with negative mutliplicities)

- An analytic approach to the winding number w

Argument principle

The number of zeros (counted with multiplicities) of $f(z)$ inside a loop is the winding number w of the image of the loop under f with respect to the origin.
(if f has poles, they need to be counted with negative mutliplicities)

- An analytic approach to the winding number w
- Complex logarithm (multivalued with period $2 \pi i$)

$$
\ln z=\ln \left(r e^{i \theta}\right)=\ln \left(e^{\ln r} e^{i \theta}\right)=\ln e^{\ln r+i \theta}=\ln r+i \theta
$$

(angle θ is called the argument (phase) of z)
Integrate the logarithmic derivative of f around a loop

Argument principle

The number of zeros (counted with multiplicities) of $f(z)$ inside a loop is the winding number w of the image of the loop under f with respect to the origin.
(if f has poles, they need to be counted with negative mutliplicities)

- An analytic approach to the winding number w
- Complex logarithm (multivalued with period $2 \pi i$)

$$
\ln z=\ln \left(r e^{i \theta}\right)=\ln \left(e^{\ln r} e^{i \theta}\right)=\ln e^{\ln r+i \theta}=\ln r+i \theta
$$

(angle θ is called the argument (phase) of z)

- Integrate the logarithmic derivative of f around a loop γ

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\int_{\gamma}(\ln f(z))^{\prime} d z=\left.\ln f(z)\right|_{\gamma}=2 \pi i w
$$

n-th roots

Special case: $z^{n}=r e^{i \theta}$
Let $H=\left\{z \in \mathbf{C}: z^{n}=1\right\}$. H is a subgroup of the unit circle (which in turn is a subgroup of the multiplicative group of complex units
$\left.\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}\right)$
$H=\left\{e^{i k \frac{2 \pi}{n}}: k \in \mathbf{Z}_{n}\right\}$ - a regular n-gon.
The solution set is a coset of H

$$
z=\sqrt[n]{r} \boldsymbol{e}^{i \frac{\theta}{n}} H=\left\{\sqrt[n]{r} e^{i \frac{\theta+2 k \pi}{n}}: k \in \mathbf{Z}_{n}\right\}
$$

Discussion

Complaints $>/ \mathrm{dev} /$ null
Ok, just kidding ...
gokhman@math.utsa.edu

[^0]: James Wood (1798)
 Carl Friedrich Gauss (1799)
 Jean-Robert Argand (1806),

