Flow past a cylinder

Consider an infinite cylinder with cross-section the unit circle. The Zhukovsky map $g(z)=z+1 / z$ squashes the unit circle to the interval $[-2,2]$ (traversed both ways).
Start with a horizontal flow left to right with speed 1. Then $f(z)=z$ is a complex potential for this flow. Composing with g we obtain a complex potential for the flow past the cylinder $f(g(z))=z+1 / z$.
We can obtain flow lines by setting the imaginary part $\operatorname{Im} f(g(x+i y))=y-\frac{y}{x^{2}+y^{2}}=$ const .
Equipotential lines are obtained by setting the real part $\operatorname{Re} f(g(x+i y))=x+\frac{x}{x^{2}+y^{2}}=$ const.
Here are contour plots of the real and imaginary parts of $f(g(z))$.

Flow past a plate with an angle of attack

To compute flow past a plate with an angle of attack φ, we can rotate the plate into a horizontal position with $z \rightarrow e^{-i \varphi} z$, apply g^{-1} to make it into the unit disk, rotate back $z \rightarrow e^{i \varphi} z$ to restore the horizontal direction of overall flow, and apply g to squash the unit disk into a horizontal plate.
We see that the composition of maps $z \rightarrow g\left(e^{i \varphi} g^{-1}\left(e^{-i \varphi} z\right)\right)$ takes the inclined plate to a horizontal one.
Thus, the complex potential for the original problem is $f\left(g\left(e^{i \varphi} g^{-1}\left(e^{-i \varphi} z\right)\right)\right)$.
To compute g^{-1} we solve $g(z)=w$ for z as follows: $z+1 / z=w \Rightarrow z^{2}+1=w z \Rightarrow z=\frac{1}{2}(w+\sqrt{w-2} \sqrt{w+2})$, where we use the prinicpal branch of square root.
Here is a contour plot of the real and imaginary parts of the potential with $\varphi=\pi / 6$.

Pictures generated with Maple: http://math.utsa.edu/~gokhman/courses/maple/flow_cyl.mws

