
Derivative as a linear map
Tangent space: Let x ∈ Rn and consider displacement vectors from x. These displacements, usually denoted ∆x, form a
vector space called the tangent space. The tangent space is just another copy of Rn but with the origin shifted to x. The
components of a displacement vector ∆x with respect to the standard basis are denoted ∆xj .
Slope: Given a function f : R→R, suppose we can draw a tangent line to the graph of f at a point (x, f(x)). This line does
not necessarily go through the origin, but if we shift the origin to (x, f(x)) and think of the line as the graph of a function
on the tangent space, it does. We get a covector — a linear map of ∆x and denote it df . In fact, df(∆x) = m ∆x, where m
is the slope of the line.
Osculatory approximation: The graph of the tangent line is very close to the graph of f near x. More precisely we can
say that the difference between these graphs: ∆f − df(∆x), where ∆f = f(x + ∆x) − f(x), becomes very small as ∆x → 0,
faster than ∆x itself. Mathematically this means that as ∆x → 0

∆f − df(∆x)
∆x

=
f(x + ∆x) − f(x) − m ∆x

∆x
→ 0.

This means that m = lim
∆x→0

f(x + ∆x) − f(x)
∆x

. Thus, the slope m is the derivative of f at x and is denoted f ′(x).

Taking the special case of the indentity function f(x) = x we obtain df(∆x) = ∆x. In this case df is denoted dx, which is
none other than the indentity map of ∆x. We may now rewrite df(∆x) = m ∆x = f ′(x)∆x = f ′(x) dx(∆x), so dropping
the variable ∆x, we obtain df = f ′(x) dx.

The formula df = f ′(x) dx is the source of the alternate notation for the derivative f ′(x) =
df

dx
.

Linear map df for vector variables: If f : Rn→Rm, we define df to be the linear map of ∆x such that as ∆x → 0.

∆f − df(∆x)
|∆x| → 0.

Note that this is a vector formula with the numerator in Rm.
Partial derivatives, the derivative matrix: Let us take a special case ∆x = hej . Then |∆x| = |hej | = |h| and

∆f − df(hej)
|h| → 0, so

f(x + hej) − f(x) − h df(ej)
h

→ 0.

Therefore df(ej) = lim
h→0

f(x + hej) − f(x)
h

, which the partial derivative of f with respect to xj and is denoted
∂f

∂xj
.

We see that df is represented by an m × n matrix, called the derivative matrix, whose columns are partial derivatives of f .

If ∆x =
n∑

j=1

hjej , then dxi(∆x) = dxi




n∑
j=1

hjej


 =

n∑
j=1

hjdxi(ej) = hi, so ∆x =
∑n

j=1 dxj(∆x)ej . Therefore, df(∆x) =

df




n∑
j=1

hjej


 =

n∑
j=1

hjdf(ej) =
n∑

j=1

df(ej) dxj(∆x) =
n∑

j=1

∂f

∂xj
dxj(∆x). Dropping the variable ∆x we get df =

n∑
j=1

∂f

∂xj
dxj .

The derivative matrix is also known as the Jacobian matrix. In the special case m = 1, the 1 × n derivative matrix may be
thought of as a row vector of partial derivatives, known as the gradient and denoted gradf or ∇f .
Rules of differentiation: The important rules are

(a) Constant: d(c) = 0
(b) Linearity: d(f + g) = df + dg

(c) Product: d(f · g) = df · g + f · dg

(d) Chain: d(f(g)) = f ′(g) dg
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