Derivative as a linear map

Tangent space: Let $x \in \mathbf{R}^n$ and consider displacement vectors from x. These displacements, usually denoted Δx , form a vector space called the tangent space. The tangent space is just another copy of \mathbf{R}^n but with the origin shifted to x. The components of a displacement vector Δx with respect to the standard basis are denoted Δx_j .

Slope: Given a function $f: \mathbf{R} \to \mathbf{R}$, suppose we can draw a tangent line to the graph of f at a point (x, f(x)). This line does not necessarily go through the origin, but if we shift the origin to (x, f(x)) and think of the line as the graph of a function on the tangent space, it does. We get a covector — a linear map of Δx and denote it df. In fact, $df(\Delta x) = m \Delta x$, where m is the *slope* of the line.

Osculatory approximation: The graph of the tangent line is very close to the graph of f near x. More precisely we can say that the difference between these graphs: $\Delta f - df(\Delta x)$, where $\Delta f = f(x + \Delta x) - f(x)$, becomes very small as $\Delta x \to 0$, faster than Δx itself. Mathematically this means that as $\Delta x \to 0$

$$\frac{\Delta f - df(\Delta x)}{\Delta x} = \frac{f(x + \Delta x) - f(x) - m \Delta x}{\Delta x} \to 0$$

This means that $m = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$. Thus, the slope *m* is the derivative of *f* at *x* and is denoted f'(x). Taking the special case of the indentity function f(x) = x we obtain $df(\Delta x) = \Delta x$. In this case *df* is denoted *dx*, which is none other than the indentity map of Δx . We may now rewrite $df(\Delta x) = m \Delta x = f'(x) \Delta x = f'(x) dx(\Delta x)$, so dropping the variable Δx , we obtain df = f'(x) dx.

The formula df = f'(x) dx is the source of the alternate notation for the derivative $f'(x) = \frac{df}{dx}$.

Linear map df for vector variables: If $f: \mathbb{R}^n \to \mathbb{R}^m$, we define df to be the linear map of Δx such that as $\Delta x \to 0$.

$$\frac{\Delta f - df(\Delta x)}{|\Delta x|} \to 0$$

Note that this is a vector formula with the numerator in $\mathbf{R}^m.$

Partial derivatives, the derivative matrix: Let us take a special case $\Delta x = he_j$. Then $|\Delta x| = |he_j| = |h|$ and

$$\frac{\Delta f - df(he_j)}{|h|} \to 0, \quad \text{so} \quad \frac{f(x + he_j) - f(x) - h \, df(e_j)}{h} \to 0.$$

Therefore $df(e_j) = \lim_{h \to 0} \frac{f(x + he_j) - f(x)}{h}$, which the partial derivative of f with respect to x_j and is denoted $\frac{\partial f}{\partial x_j}$. We see that df is represented by an $m \times n$ matrix, called the derivative matrix, whose columns are partial derivatives of f. If $\Delta x = \sum_{j=1}^{n} h_j e_j$, then $dx_i(\Delta x) = dx_i\left(\sum_{j=1}^{n} h_j e_j\right) = \sum_{j=1}^{n} h_j dx_i(e_j) = h_i$, so $\Delta x = \sum_{j=1}^{n} dx_j(\Delta x)e_j$. Therefore, $df(\Delta x) = df\left(\sum_{j=1}^{n} h_j e_j\right) = \sum_{j=1}^{n} h_j df(e_j) = \sum_{j=1}^{n} df(e_j) dx_j(\Delta x) = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j(\Delta x)$. Dropping the variable Δx we get $df = \sum_{j=1}^{n} \frac{\partial f}{\partial x_j} dx_j$.

The derivative matrix is also known as the Jacobian matrix. In the special case m = 1, the $1 \times n$ derivative matrix may be thought of as a row vector of partial derivatives, known as the *gradient* and denoted grad f or ∇f .

Rules of differentiation: The important rules are

- (a) Constant: d(c) = 0
- (b) Linearity: d(f+g) = df + dg
- (c) Product: $d(f \cdot g) = df \cdot g + f \cdot dg$
- (d) Chain: d(f(g)) = f'(g) dg

Copyright 1997 Dr. Dmitry Gokhman