Derivative as a linear map

Tangent space: Let $x \in \mathbf{R}^{n}$ and consider displacement vectors from x. These displacements, usually denoted Δx, form a vector space called the tangent space. The tangent space is just another copy of \mathbf{R}^{n} but with the origin shifted to x. The components of a displacement vector Δx with respect to the standard basis are denoted Δx_{j}.
Slope: Given a function $f: \mathbf{R} \rightarrow \mathbf{R}$, suppose we can draw a tangent line to the graph of f at a point $(x, f(x))$. This line does not necessarily go through the origin, but if we shift the origin to $(x, f(x))$ and think of the line as the graph of a function on the tangent space, it does. We get a covector - a linear map of Δx and denote it $d f$. In fact, $d f(\Delta x)=m \Delta x$, where m is the slope of the line.
Osculatory approximation: The graph of the tangent line is very close to the graph of f near x. More precisely we can say that the difference between these graphs: $\Delta f-d f(\Delta x)$, where $\Delta f=f(x+\Delta x)-f(x)$, becomes very small as $\Delta x \rightarrow 0$, faster than Δx itself. Mathematically this means that as $\Delta x \rightarrow 0$

$$
\frac{\Delta f-d f(\Delta x)}{\Delta x}=\frac{f(x+\Delta x)-f(x)-m \Delta x}{\Delta x} \rightarrow 0
$$

This means that $m=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$. Thus, the slope m is the derivative of f at x and is denoted $f^{\prime}(x)$.
Taking the special case of the indentity function $f(x)=x$ we obtain $d f(\Delta x)=\Delta x$. In this case $d f$ is denoted $d x$, which is none other than the indentity map of Δx. We may now rewrite $d f(\Delta x)=m \Delta x=f^{\prime}(x) \Delta x=f^{\prime}(x) d x(\Delta x)$, so dropping the variable Δx, we obtain $d f=f^{\prime}(x) d x$.
The formula $d f=f^{\prime}(x) d x$ is the source of the alternate notation for the derivative $f^{\prime}(x)=\frac{d f}{d x}$.
Linear map $d f$ for vector variables: If $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, we define $d f$ to be the linear map of Δx such that as $\Delta x \rightarrow 0$.

$$
\frac{\Delta f-d f(\Delta x)}{|\Delta x|} \rightarrow 0
$$

Note that this is a vector formula with the numerator in \mathbf{R}^{m}.
Partial derivatives, the derivative matrix: Let us take a special case $\Delta x=h e_{j}$. Then $|\Delta x|=\left|h e_{j}\right|=|h|$ and

$$
\frac{\Delta f-d f\left(h e_{j}\right)}{|h|} \rightarrow 0, \quad \text { so } \quad \frac{f\left(x+h e_{j}\right)-f(x)-h d f\left(e_{j}\right)}{h} \rightarrow 0
$$

Therefore $d f\left(e_{j}\right)=\lim _{h \rightarrow 0} \frac{f\left(x+h e_{j}\right)-f(x)}{h}$, which the partial derivative of f with respect to x_{j} and is denoted $\frac{\partial f}{\partial x_{j}}$.
We see that $d f$ is represented by an $m \times n$ matrix, called the derivative matrix, whose columns are partial derivatives of f.
If $\Delta x=\sum_{j=1}^{n} h_{j} e_{j}$, then $d x_{i}(\Delta x)=d x_{i}\left(\sum_{j=1}^{n} h_{j} e_{j}\right)=\sum_{j=1}^{n} h_{j} d x_{i}\left(e_{j}\right)=h_{i}$, so $\Delta x=\sum_{j=1}^{n} d x_{j}(\Delta x) e_{j}$. Therefore, $d f(\Delta x)=$ $d f\left(\sum_{j=1}^{n} h_{j} e_{j}\right)=\sum_{j=1}^{n} h_{j} d f\left(e_{j}\right)=\sum_{j=1}^{n} d f\left(e_{j}\right) d x_{j}(\Delta x)=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}(\Delta x)$. Dropping the variable Δx we get $d f=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}$.
The derivative matrix is also known as the Jacobian matrix. In the special case $m=1$, the $1 \times n$ derivative matrix may be thought of as a row vector of partial derivatives, known as the gradient and denoted grad f or ∇f.
Rules of differentiation: The important rules are
(a) Constant: $d(c)=0$
(b) Linearity: $d(f+g)=d f+d g$
(c) Product: $d(f \cdot g)=d f \cdot g+f \cdot d g$
(d) Chain: $d(f(g))=f^{\prime}(g) d g$

