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We will look at the algebra of differentials and the exterior derivative, a natural general-
ization of the usual derivative.

In the early days calculus was done mainly with differentials, not derivatives, with the
following rules d(c) = 0, d(f +g) = df +dg, d(fg) = df g+f dg, etc. We see vestiges of this
in modern calculus texts typically in sections on linear approximation and in integration
by substitution. For functions of one variable the differential is related to the derivative
by df = f ′dx, so to save on writing dx a lot, most calculus books have dropped it and
concentrate mostly on f ′. When one gets to functions of several variables, however, it
becomes clear that we should have kept the dx, just as we teach kids to brush their teeth
even though the first set will fall out anyway.

Like his contemporaries Leonhard Euler (1707–1783) consistenly used differentials, but
was stumped by the problem of substitutions in multiple integrals. The problem was
solved by Hermann Grassmann (1809–1877) and Élie Cartan (1869–1951), who discovered
that multiplication of differentials (the wedge ∧) is alternating in the sense that switching
variables causes a sign change. A big clue was the fact that the area of a parallelogram
formed by two vectors in the plane, or a parallelepiped formed by three vectors in 3-space
is an alternating function (the determinant). In fact, we will see that the famous vector
products are special cases of the wedge product.

The exterior derivative generalizes the notion of the derivative. Its special cases include
the gradient, curl and divergence. The notion of derivative is a local one, so we will start
by looking at a neighborhood U of a fixed point p.

1 Tangent space

Given a open set U in n-dimensional Euclidean space the tangent space to U at a point
p ∈ U is the n-dimensional Euclidean space with origin at p and is denoted Tp(U).

You can think of Tp(U) as the space of all direction vectors from p. Sometimes Tp(U)
is identified with the space of all directional derivatives at p. Given a direction vector
u ∈ Tp(U), the directional derivative of a function f : U →R is

d

dt
f(p + tu).

If U comes equipped with cartesian coordinates x1, x2, ...xn we then have corresponding
coordinates for Tp(U), namely ∆xi = xi − pi. In view of the identification of Tp(U) with
the space of all directional derivatives ∆xi are sometimes denoted by ∂/∂xi.
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2 The space of differentials

The space of differentials T ∗

p (U) is the dual vector space of the tangent space, i.e. the vector
space of linear maps Tp(U) → R.

The dual cartesian coordinate basis for T ∗

p (U) is denoted by dxi. Recall the definition
of dual basis dxi(∆xj) = δij. You can think of dxi as the projection to the i-th coordinate,
i.e. given a vector u ∈ Tp(U), we define dxi(u) = ui.

3 Tensor powers

Given a vector space V we can construct its tensor power
⊗k V = V ⊗ V ⊗ ...V as follows.

We take the cartesian power
∏k V = V × V × ...V and consider the vector space W

spanned by the elements of
∏k V (considered as a set). Then we take the subspace of W

generated by the multilinear relations (e.g. elements of the form (u, v)+(u,w)− (u, v +w),
a(u, v) − (au, v) etc. when k = 2), and factor it out to obtain

⊗k V .
The motivation for this comes from multilinear maps, i.e. maps linear in each variable.

The set of all multilinear maps
∏k V → R is naturally equivalent to the set of linear

maps
⊗k V → R. This is known as the universal property of multilinear maps. Note that

(
⊗k V )∗ =

⊗k V ∗.
Given a basis {v1, v2, ...vn} for V we have a basis for

⊗k V which consists of all distinct
sequences of vi of length k (all distinct k-tuples of vi). Such sequences are typically written
with ⊗ inbetween.

Example 3.1 If {x, y} is a basis for V , then {x ⊗ x, x ⊗ y, y ⊗ x, y ⊗ y} is a basis for
V ⊗ V .

In particular, for k ≤ n
dim

⊗kV = nk

The various tensor powers can be combined in a single graded algebra

∞
⊕

k=1

⊗kV = V ⊕ (V ⊗ V ) ⊕ (V ⊗ V ⊗ V ) ⊕ ...

4 Exterior powers

If in the above construction of tensor powers we include the alternating relations (e.g.
(u, v, w) + (v, u, w), etc. when k = 3), we obtain the exterior power

∧k V .
The motivation for this comes from alternating multilinear maps, i.e. maps linear in

each variable that change sign if two variables are transposed (more generally, for any
permutation of the variable the sign changes according to the parity of the permutation).
The set of all alternating multilinear maps

∏k V → R is naturally equivalent to the set of
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linear maps
∧k V → R. This is known as the universal property of alternating multilinear

maps. Note that (
∧k V )∗ =

∧k V ∗.
Given a basis {v1, v2, ...vn} for V we have a basis for

∧k V which consists of all distinct
sequences of vi of length k, where we require that in any given sequence the vi are distinct
and arranged in a particular order (e.g. the order of increasing index). Such sequences are
typically written with ∧ inbetween.

Example 4.1 If {x, y, z} is a basis for V , then {y ∧ z, z ∧ x, x ∧ y} is a basis for V ∧ V .

In particular,
∧k V = 0 for k > n and for k ≤ n

dim
∧kV =

(

n
k

)

=
n!

k!(n − k)!

Example 4.2 Let A : V → V be a linear transformation. Take its n-th exterior power
α :
∏n V →

∧n V by letting α(u1, u2, ...un) = Au1∧Au2∧ ...Aun. This is an alternating mul-
tilinear map so by the universal property we obtain a corresponding linear transformation
of
∧n V . The latter vector space is one dimensional, so the transformation is multiplication

by a scalar. It can be seen without difficulty that if A is represented by a matrix (aij) with
respect to any basis of V , then the above scalar is the determinant of that matrix, i.e.

Au1 ∧ Au2 ∧ ...Aun = |A| u1 ∧ u2 ∧ ...un, where |A| =
∑

π∈Σn

sgn π
n
∏

i=1

aiπ(i).

The various exterior powers can be combined in a single graded algebra

∞
⊕

k=1

∧kV =
n
⊕

k=1

∧kV = V ⊕ (V ∧ V ) ⊕ (V ∧ V ∧ V ) ⊕ ...(
∧nV )

Unlike the tensor algebra, this is finite dimensional as a vector space.

u ∧ v = (uxdx + uydy + uzdz) ∧ (vxdy ∧ dz + vydz ∧ dx + vzdx ∧ dy) u · v

= (uxvx + uyvy + uzvz)dx ∧ dy ∧ dz dot product

u ∧ v = (uxdx + uydy + uzdz) ∧ (vxdx + vydy + vzdz)

= (uyvz − uzvy)dy ∧ dz + (uzvx − uxvz)dz ∧ dx + (uxvy − uyvx)dx ∧ dy u × v

=

∣

∣

∣

∣

∣

uy uz

vy vz

∣

∣

∣

∣

∣

dy ∧ dz +

∣

∣

∣

∣

∣

uz ux

vz vx

∣

∣

∣

∣

∣

dz ∧ dx +

∣

∣

∣

∣
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ux uy

vx vy
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∣

∣

dx ∧ dy cross product

u ∧ v ∧ w =

∣

∣

∣

∣

∣

∣

∣
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vx vy vz

wx wy wz
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∣

∣

dx ∧ dy ∧ dz det (triple prod)

=

(
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∣
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∣

∣

vy vz

wy wz
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∣
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∣

∣
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∣
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∣
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∣

∣
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∣

∣
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∣

)

dx ∧ dy ∧ dz (uvw) = u · (v × w)
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5 Exterior algebra of the space of differentials

The exterior powers of the space of differentials
∧k T ∗

p (U) can be thought of as the vector

spaces of multilinear alternating maps
∏k Tp(U) → R.

6 Differential forms

Differential 0-forms are smooth maps U → R. Differential 1-forms are smooth maps
U → T ∗

p (U) taking p ∈ U to an element of T ∗

p (U). Differential k-forms are smooth maps

U →
∧k T ∗

p (U) taking p ∈ U to an element of
∧k T ∗

p (U). The set of k-forms on U will be

denoted by Ωk(U) =
∧k Ω1(U).

degree name cartesian coordinate form dim
∧k T ∗

p (R3)

0-form scalar form F = F (x, y, z) 1
1-form work form ω = Adx + Bdy + Cdz 3
2-form flux form ϕ = Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy 3
3-form density form ρ = Fdx ∧ dy ∧ dz 1

7 Exterior derivative

Given a smooth function F : U →Rm, its differential dF is a linear map that approximates
F near p. We can think of dF as a map Tp(U) → Rm.

In cartesian coordinates we have

dF =
n
∑

i=1

∂F

∂xi

dxi = DF · dx,

where DF is the matrix of partial derivatives of components of F known as the Jacobian
matrix.

We generalize d to the graded algebra of differentials by constructing linear maps d :
Ωk(U)→Ωk+1(U) (all called d by an abuse of notation) such that

d ◦ d = 0

d(ω ∧ η) = dω ∧ η + (−1)deg ωω ∧ dη

It is intuitively clear how armed with these rules one can compute d of any form. The
first rule is known as the first part of the Poincaré lemma and can be formulated as in
terms of the equality of mixed partial derivatives. The second rule is a generalization of
the product rule of differentiation (sometimes known as the Leibniz rule).

Here we show the vector forms of exterior differentiation (see Darling) (here we use

the symbolic notation ∇ =
(

∂
∂x

, ∂
∂y

, ∂
∂z

)

, where ∇ is thought of as a vector differential
operator obeying the usual algebraic rules, but with the partial derivatives applied rather
than multiplied):
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exterior derivative vector interpretation

dF =
∂F

∂x
dx +

∂F

∂y
dy +

∂F

∂z
dz grad F = DF = ∇F =

(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

dω = d(Adx + Bdy + Cdz) =

(

∂C

∂y
−

∂B

∂z

)

dy ∧ dz curl Ψ = rot Ψ = ∇× Ψ

+

(

∂A

∂z
−

∂C

∂x

)

dz ∧ dx +

(

∂B

∂x
−

∂A

∂y

)

dx ∧ dy =

(

∂Ψz

∂y
−

∂Ψy

∂z
,
∂Ψx

∂z
−

∂Ψz

∂x
,
∂Ψy

∂x
−

∂Ψx

∂y

)

dϕ = d(Pdy ∧ dz + Qdz ∧ dx + Rdx ∧ dy)

=

(

∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)

dx ∧ dy ∧ dz div Φ = ∇ · Φ =
∂Φx

∂x
+

∂Φy

∂y
+

∂Φz

∂z

Vector forms of the two rules of exterior differentiation (see Gradshteyn/Ryzhik 10.31):

d ◦ d = 0

curl (grad F ) = 0 ∇× (∇F ) = 0

div (curl Φ) = 0 ∇ · (∇× Φ) = 0

d(ω ∧ η) = dω ∧ η + (−1)deg ωω ∧ dη

grad (FG) = (grad F )G + F (grad G) ∇(FG) = (∇F )G + F (∇G)

curl (FΨ) = (grad F ) × Ψ + F (curl Ψ) ∇× (FΨ) = (∇F ) × Ψ + F (∇× Ψ)

div (Ψ1 × Ψ2) = (curl Ψ1) · Ψ2 − Ψ1 · (curl Ψ2) ∇ · (Ψ1 × Ψ2) = (∇× Ψ1) · Ψ2 − Ψ1 · (∇× Ψ2)

div (FΦ) = (grad F ) · Φ + F (div Φ) ∇ · (FΦ) = (∇F ) · Φ + F (∇ · Φ)


