Spaces of complex valued functions

If G is a nonempty set, let $\mathbf{C}^G := \{u: G \to \mathbf{C}\}.$

With pointwise algebraic operations \mathbf{C}^G inherits ring structure from \mathbf{C} . In particular, \mathbf{C}^G is a complex vector space. For $G := \{k \in \mathbf{Z}: 1 \le k \le n\}, \mathbf{C}^G = \mathbf{C}^n$ with $u_k := u(k)$.

$$\textbf{Inner product (dot product) on } \mathbf{C}^n \textbf{:} \ \langle u,v\rangle := \sum_{k=1}^n u_k \overline{v}_k$$

* conjugate symmetric: $\langle u, v \rangle = \overline{\langle v, u \rangle}$

* conjugate bilinear:
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle, \ \langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle, \ \langle cu, v \rangle = c \ \langle u, v \rangle, \ \langle u, cv \rangle = \overline{c} \ \langle u, v \rangle$$

Norms on Cⁿ: *p*-norm:
$$|u|_p := \left(\sum_{k=1}^n |u_k|^p\right)^{1/p}$$
, where $p \ge 1$; $|u|_{\infty} = \max\{|u_k|: 1 \le k \le n\}$

- * positive: $|u|_p \ge 0$, definite: $|u|_p = 0 \Rightarrow u = 0$
- * Hölder ¹ inequality: $|\langle u, v \rangle| \le |u|_p |v|_q$, where p + q = pqProof (n - 2): $0 \le \langle u, w \rangle = \langle u, u \rangle = \overline{a} \langle u, u \rangle = \overline{a}$

Proof
$$(p = 2)$$
: $0 \le \langle u - cv, u - cv \rangle = \langle u, u \rangle - c \langle u, v \rangle - c \langle v, u \rangle + cc \langle v, v \rangle$, let $c = \langle u, v \rangle / \langle v, v \rangle$
Minkowski inequality (triangle inequality): $|u + v|_p \le |u|_p + |v|_p$

Proof:
$$\sum_{k=1}^{n} |u_k + v_k|^p = \sum_{k=1}^{n} |u_k| |u_k + v_k|^{p-1} + \sum_{k=1}^{n} |v_k| |u_k + v_k|^{p-1}$$
, apply Hölder.

* Polarization identity: $|u+v|_2^2 + |u-v|_2^2 = 2\left(|u|_2^2 + |v|_2^2\right)$, so $4\langle u,v\rangle = |u+v|_2^2 - |u-v|_2^2$

Complex valued functions on topological groups: In the definition of inner product we "sum" over G, so G must have a measure. We will look at topological groups with Haar measure. Specifically we are interested in the following examples:

- * $G = \mathbf{Z}_+$ or $G = \mathbf{Z}$ (\mathbf{C}^G = infinite sequences)
- * $G = \mathbf{T}$:= the unit circle $S^1 \subset \mathbf{C}$ with $d\sigma = d\theta/(2\pi)$ (\mathbf{C}^G = periodic functions of a real variable)
- * $G = \mathbf{R}$ with dx (\mathbf{C}^G = functions of a real variable)

Lebesgue spaces: For discrete G, $\ell_p := \left\{ u \in \mathbf{C}^G : \sum_{k \in G} |u_k|^p < \infty \right\}$

Definitions of p-norm are the same as above. In ℓ_2 , in view of Hölder's inequality, we may define an inner product as well.

For continuous
$$G$$
, $L_p(G) := \left\{ u \in \mathbf{C}^G : \int_G |u(t)|^p dt < \infty \right\} / \sim$, where $u \sim v \Leftrightarrow \{t \in G : u(t) \neq v(t)\}$ has measure zero.
Norm on $L_p(G) : |u|_p := \left(\int_G |u(t)|^p dt\right)^{1/p}$. Inner product on $L_2(G) : \langle u, v \rangle := \int_G u(t)\overline{v(t)} dt$
Theorem: $L_2(\mathbf{T}) \subset L_2(\mathbf{T})$

Theorem: $L_2(\mathbf{T}) \subset L_1(\mathbf{T})$

Proof:
$$|f|_1 = \langle f, \overline{f}/|f| \rangle$$

Riesz-Fischer Theorem (Cauchy criterion for L_2): L_2 is complete: a sequence $u_n \in L_2$ converges in the mean, i.e. $\exists u \in L_2$ with $|u - u_n|_2 \to 0$, $\Leftrightarrow \forall \varepsilon > 0 \exists N$ such that $n, m \ge N \Rightarrow |u_n - u_m|_2 < \varepsilon$.

Weak convergence: In L_2 , $u_n \to u$ weakly means $\forall v \in L_2 \ \langle u_n, v \rangle \to \langle u, v \rangle$.

Theorem: $u_n \to u$ weakly $\Rightarrow |u|_2 \le \liminf |u_n|_2$.

Proof: Suppose $|u_n|_2 \leq b$ for large *n*. Then $|u|_2^2 = \langle u, u \rangle = \lim \langle u_n, u \rangle \leq b |u|_2$, so $|u|_2 \leq b$.

Theorem: $u_n \to u$ in the mean $\Leftrightarrow u_n \to u$ weakly and $|u_n|_2 \to |u|_2$.

$$\begin{aligned} Proof: \ |\langle u_n, v \rangle - \langle u, v \rangle| &= |\langle u_n - u, v \rangle| \le |u_n - u|_2 |v|_2, \ ||u_n|_2 - |u|_2| \le |u_n - u|_2. \\ \text{Conversely} \ |u - u_n|_2^2 &= |u_n|_2^2 - \langle u_n, u \rangle - \langle u, u_n \rangle + |u|_2^2 \to |u|_2^2 - \langle u, u \rangle - \langle u, u \rangle + |u|_2^2 = 0. \end{aligned}$$

Theorem of Choice: L_2 is separable and every bounded sequence has a weakly convergent subsequence.

Reference: F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar, 1955 (Dover, 1990).

Copyright 2000 Dmitry Gokhman

¹The extension of this and Minkowski inequality to integrals is due to F. Riesz. Special case for p = 2 is known as Cauchy inequality and its extension to integrals, known as Schwartz inequality, is due to Bunyakovsky.