
Complex Calculus
Complex numbers: Let R = R [X ] be the univariate polynomial ring R [X ] (free commutative R-algebra on {X}). It is a

principal ideal domain (III.6.4 [2]), so the ideal M generated by X2 + 1 is maximal and C
def
= R/M is a field. We let i = [X ].

If z ∈ C, then uniquely z = a + ib, where a, b ∈ R, so C∼=R2 as a complete normed real vector space, where we define the

complex conjugate a + ib = a − ib. and modulus |z| def
=

√
zz. In polar coordinates z = r cos θ + ir sin θ, where r = |z| and

θ = arg z (angle). Multiplication adds angles, suggesting exponential notation z = reiθ (confirmed by Taylor series).

Differentiation: The differential df of a complex function f(z) is a C-linear map of ∆z that approximates ∆f = f(z +
∆z)− f(z) at z. We write ∆f = df + ε and require that with z fixed, ε/∆z → 0 as ∆z → 0. A C-linear map of ∆z must be
of the form ∆z 7→ c∆z, so df = c(z)∆z. The coefficient c(z) is called the derivative of f and is denoted f ′. Since ε/∆z → 0,
f ′(z) = lim

∆z→0
∆f/∆z (see Theorems 3.1–2 [4]). If df exists on a domain, i.e. an open connected (thus, path connected) set

Ω ⊆ C, f is called holomorphic (f ∈ H(Ω)). In fact, f ∈ H(Ω) ⇔ f is analytic (locally representable by power series).

Cauchy-Riemann equations: We can consider f as a real vector function by letting z = x + iy and f = u + iv, where
u and v are real functions of x and y. Then df = du + i dv = (ux dx + uy dy) + i(vx dx + vy dy). This is a C-linear map of

dz = dx + i dy ⇔ a
def
= ux = vy and b

def
= vx = −uy. In this case df = (a + ib)(dx + i dy), so f ′ = a + ib.

Looman-Menschoff theorem: If f is holomorphic, we get the Cauchy-Riemann equations ux = vy, vx = −uy. Conversely
if ux, uy, vx, vy exist and are continuous, then f is differentiable as a real vector function. Let df = du + i dv. The C-R
equations ⇒ df is C-linear, so f is holomorphic. In fact, we need not require the continuity of the partials (see 1.6 [3]).

Properties of differentiation: For algebraic operations and composition the rules are the same as in real calculus.

Curves and partitions: Let Ω be a domain and let [a, b] ⊆ R and c : [a, b]→Ω be continuous. The image of c is a curve in
Ω. A partition of [a, b] is a finite subset containing the endpoints. For a partition P = {a0 = a < a1 < ... < an = b} of [a, b],

define |P | =
n−1
max
k=0

(ak+1 − ak). The set of all partitions is a directed set and P ⊆ Q ⇒ |P | ≥ |Q|.

Riemann-Stieltjes sums: Given a partition P , choose a∗

k ∈ [ak, ak+1]. Let zk = c(ak), ∆zk = zk+1 − zk, z∗k = c(a∗

k),

LP =

n−1
∑

k=0

|∆zk|, and SP =

n−1
∑

k=0

f(z∗k)∆zi. If c has bounded variation, i.e. |L| def
=

∫

L

|dz| def
= sup

P

LP < ∞, L is called rectifiable.

Integrals: Since [a, b] is compact and c is continuous, L is compact. If f is continuous (f ∈ C(Ω)), then it is uniformly
continuous on L, so if ε > 0, ∃δ > 0 with |w1 − w2| < δ ⇒ |f(w1) − f(w2)| < ε. Let εm → 0 monotonically and let Im be the

closure of {SP : |P | < δm}. Then Im ⊇ Im+1 and diam Im ≤ 2εm |L| → 0, so by Cantor’s Theorem

∞
⋂

m=1

Im = {I} def
=

∫

L

f(z) dz

(see IV.1.4 [1]). The integral I does not depend on the choice of parametrization c (see IV.1.13 [1]).

Example: If c(t) is smooth, dz = c′dt. Let c(t) = eit, −π < t ≤ π (unit circle) and f(z) = 1/z. Then dz = ieit dt and
∫

c

f(z) dz = i

∫ π

−π

f(eit) eit dt = i

∫ π

−π

1

eit
eit dt = i

∫ π

−π

dt = 2πi.

Properties of integration: The integral is linear in f and additive in L. If |f | ≤ M on L, then

∣

∣

∣

∣

∫

L

f(z) dz

∣

∣

∣

∣

≤ M |L|.

Cauchy-Goursat-Morera theorem: If f ∈ C(Ω), then f ∈ H(Ω) ⇔
∫

L

f(z) dz = 0 for all boundary L ([L] = 0 ∈ H1(Ω)).

Proof: If f ∈ H(Ω), then f(z) dz is closed. Indeed, df = f ′ dz, so d(f dz) = f ′ dz
∧

dz = 0. Since [L] = 0, there exists a

2-chain D ⊆ Ω with ∂D = L. If f ′ is continuous, Green’s theorem shows

∫

L

f(z) dz =

∫

D

d(f(z) dz) = 0. Continuity of f ′

need not be assumed (Goursat) (see e.g. Theorem 1.2.2 [3]). To prove the converse (Morera) we may assume that Ω is a disc.

Let w0, w ∈ Ω. If L1, L2 are paths from w0 to w, then L2 −L1 is a boundary. Thus, F (w)
def
=

∫ w

w0

f(z) dz is path independent

and F ′ = f . But Cauchy’s integral formula (below) implies that F ′ is differentiable.

Deformation principle: If f ∈ H(Ω) and [L1] = [L2], then I(L1, f) = I(L2, f). We get a bilinear map I : H1(Ω)×H(Ω)→C.

Cauchy’s Integral Formula: If g ∈ H(Ω), z0 ∈ Ω and L is a boundary simple closed rectifiable oriented curve around z0,

then

∫

L

g(z)

(z − z0)k+1
dz = 2πi ck, where ck =

g(k)(z0)

k!
. In particular, g is C∞ and ck are its Taylor coefficients.

Proof: Deform L to a circle of radius r around z0. Let ε > 0. By continuity of g, ∃r > 0 with |z − z0| ⇒ |g(z)− g(z0)| < ε.

Then

∣

∣

∣

∣

∫

L

g(z) − g(z0)

z − z0
dz

∣

∣

∣

∣

≤ 2πε. Since ε is arbitrary,

∫

L

g(z)

z − z0
dz =

∫

L

g(z0)

z − z0
dz = g(z0)

∫

L

1

z − z0
dz = g(z0) 2πi.

To obtain the general formula, differentiate both sides with respect to z0.

References:

[1] J. Conway, Functions of one complex variable, Springer-Verlag, 1978

[2] T. Hungerford, Algebra, Holt, Rinehart and Winston, 1974

[3] R. Narasimhan, Complex analysis in one variable, Birkhäuser, 1985
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