Complex Calculus

Complex numbers: Let $R=\mathbf{R}[X]$ be the univariate polynomial ring $\mathbf{R}[X]$ (free commutative \mathbf{R}-algebra on $\{X\}$). It is a principal ideal domain (III.6.4 [2]), so the ideal M generated by $X^{2}+1$ is maximal and $\mathbf{C} \stackrel{\text { def }}{=} R / M$ is a field. We let $i=[X]$. If $z \in \mathbf{C}$, then uniquely $z=a+i b$, where $a, b \in \mathbf{R}$, so $\mathbf{C} \cong \mathbf{R}^{2}$ as a complete normed real vector space, where we define the complex conjugate $\overline{a+i b}=a-i b$. and modulus $|z| \stackrel{\text { def }}{=} \sqrt{z \bar{z}}$. In polar coordinates $z=r \cos \theta+i r \sin \theta$, where $r=|z|$ and $\theta=\arg z$ (angle). Multiplication adds angles, suggesting exponential notation $z=r e^{i \theta}$ (confirmed by Taylor series).
Differentiation: The differential $d f$ of a complex function $f(z)$ is a C-linear map of Δz that approximates $\Delta f=f(z+$ $\Delta z)-f(z)$ at z. We write $\Delta f=d f+\varepsilon$ and require that with z fixed, $\varepsilon / \Delta z \rightarrow 0$ as $\Delta z \rightarrow 0$. A C-linear map of Δz must be of the form $\Delta z \mapsto c \Delta z$, so $d f=c(z) \Delta z$. The coefficient $c(z)$ is called the derivative of f and is denoted f^{\prime}. Since $\varepsilon / \Delta z \rightarrow 0$, $f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \Delta f / \Delta z$ (see Theorems 3.1-2 [4]). If $d f$ exists on a domain, i.e. an open connected (thus, path connected) set $\Omega \subseteq \mathbf{C}, f$ is called holomorphic $(f \in \mathcal{H}(\Omega))$. In fact, $f \in \mathcal{H}(\Omega) \Leftrightarrow f$ is analytic (locally representable by power series).
Cauchy-Riemann equations: We can consider f as a real vector function by letting $z=x+i y$ and $f=u+i v$, where u and v are real functions of x and y. Then $d f=d u+i d v=\left(u_{x} d x+u_{y} d y\right)+i\left(v_{x} d x+v_{y} d y\right)$. This is a C-linear map of $d z=d x+i d y \Leftrightarrow a \stackrel{\text { def }}{=} u_{x}=v_{y}$ and $b \stackrel{\text { def }}{=} v_{x}=-u_{y}$. In this case $d f=(a+i b)(d x+i d y)$, so $f^{\prime}=a+i b$.
Looman-Menschoff theorem: If f is holomorphic, we get the Cauchy-Riemann equations $u_{x}=v_{y}, v_{x}=-u_{y}$. Conversely if $u_{x}, u_{y}, v_{x}, v_{y}$ exist and are continuous, then f is differentiable as a real vector function. Let $d f=d u+i d v$. The C-R equations $\Rightarrow d f$ is \mathbf{C}-linear, so f is holomorphic. In fact, we need not require the continuity of the partials (see 1.6 [3]).
Properties of differentiation: For algebraic operations and composition the rules are the same as in real calculus.
Curves and partitions: Let Ω be a domain and let $[a, b] \subseteq \mathbf{R}$ and $c:[a, b] \rightarrow \Omega$ be continuous. The image of c is a curve in Ω. A partition of $[a, b]$ is a finite subset containing the endpoints. For a partition $P=\left\{a_{0}=a<a_{1}<\ldots<a_{n}=b\right\}$ of $[a, b]$, define $|P|=\max _{k=0}^{n-1}\left(a_{k+1}-a_{k}\right)$. The set of all partitions is a directed set and $P \subseteq Q \Rightarrow|P| \geq|Q|$.
Riemann-Stieltjes sums: Given a partition P, choose $a_{k}^{*} \in\left[a_{k}, a_{k+1}\right]$. Let $z_{k}=c\left(a_{k}\right), \Delta z_{k}=z_{k+1}-z_{k}, z_{k}^{*}=c\left(a_{k}^{*}\right)$, $L_{P}=\sum_{k=0}^{n-1}\left|\Delta z_{k}\right|$, and $S_{P}=\sum_{k=0}^{n-1} f\left(z_{k}^{*}\right) \Delta z_{i}$. If c has bounded variation, i.e. $|L| \stackrel{\text { def }}{=} \int_{L}|d z| \stackrel{\text { def }}{=} \sup _{P} L_{P}<\infty, L$ is called rectifiable.
Integrals: Since $[a, b]$ is compact and c is continuous, L is compact. If f is continuous $(f \in \mathcal{C}(\Omega))$, then it is uniformly continuous on L, so if $\varepsilon>0, \exists \delta>0$ with $\left|w_{1}-w_{2}\right|<\delta \Rightarrow\left|f\left(w_{1}\right)-f\left(w_{2}\right)\right|<\varepsilon$. Let $\varepsilon_{m} \rightarrow 0$ monotonically and let I_{m} be the closure of $\left\{S_{P}:|P|<\delta_{m}\right\}$. Then $I_{m} \supseteq I_{m+1}$ and diam $I_{m} \leq 2 \varepsilon_{m}|L| \rightarrow 0$, so by Cantor's Theorem $\bigcap_{m=1}^{\infty} I_{m}=\{I\} \stackrel{\text { def }}{=} \int_{L} f(z) d z$ (see IV.1.4 [1]). The integral I does not depend on the choice of parametrization c (see IV.1.13 [1]).
Example: If $c(t)$ is smooth, $d z=c^{\prime} d t$. Let $c(t)=e^{i t},-\pi<t \leq \pi$ (unit circle) and $f(z)=1 / z$. Then $d z=i e^{i t} d t$ and
$\int_{c} f(z) d z=i \int_{-\pi}^{\pi} f\left(e^{i t}\right) e^{i t} d t=i \int_{-\pi}^{\pi} \frac{1}{e^{i t}} e^{i t} d t=i \int_{-\pi}^{\pi} d t=2 \pi i$.
Properties of integration: The integral is linear in f and additive in L. If $|f| \leq M$ on L, then $\left|\int_{L} f(z) d z\right| \leq M|L|$.
Cauchy-Goursat-Morera theorem: If $f \in \mathcal{C}(\Omega)$, then $f \in \mathcal{H}(\Omega) \Leftrightarrow \int_{L} f(z) d z=0$ for all boundary $L\left([L]=0 \in H_{1}(\Omega)\right)$. Proof: If $f \in \mathcal{H}(\Omega)$, then $f(z) d z$ is closed. Indeed, $d f=f^{\prime} d z$, so $d(f d z)=f^{\prime} d z \bigwedge d z=0$. Since $[L]=0$, there exists a 2-chain $D \subseteq \Omega$ with $\partial D=L$. If f^{\prime} is continuous, Green's theorem shows $\int_{L} f(z) d z=\int_{D} d(f(z) d z)=0$. Continuity of f^{\prime} need not be assumed (Goursat) (see e.g. Theorem 1.2.2 [3]). To prove the converse (Morera) we may assume that Ω is a disc. Let $w_{0}, w \in \Omega$. If L_{1}, L_{2} are paths from w_{0} to w, then $L_{2}-L_{1}$ is a boundary. Thus, $F(w) \stackrel{\text { def }}{=} \int_{w_{0}}^{w} f(z) d z$ is path independent and $F^{\prime}=f$. But Cauchy's integral formula (below) implies that F^{\prime} is differentiable.
Deformation principle: If $f \in \mathcal{H}(\Omega)$ and $\left[L_{1}\right]=\left[L_{2}\right]$, then $I\left(L_{1}, f\right)=I\left(L_{2}, f\right)$. We get a bilinear map $I: H_{1}(\Omega) \times \mathcal{H}(\Omega) \rightarrow \mathbf{C}$. Cauchy's Integral Formula: If $g \in \mathcal{H}(\Omega), z_{0} \in \Omega$ and L is a boundary simple closed rectifiable oriented curve around z_{0}, then $\int_{L} \frac{g(z)}{\left(z-z_{0}\right)^{k+1}} d z=2 \pi i c_{k}$, where $c_{k}=\frac{g^{(k)}\left(z_{0}\right)}{k!}$. In particular, g is \mathcal{C}^{∞} and c_{k} are its Taylor coefficients.
Proof: Deform L to a circle of radius r around z_{0}. Let $\varepsilon>0$. By continuity of $g, \exists r>0$ with $\left|z-z_{0}\right| \Rightarrow\left|g(z)-g\left(z_{0}\right)\right|<\varepsilon$. Then $\left|\int_{L} \frac{g(z)-g\left(z_{0}\right)}{z-z_{0}} d z\right| \leq 2 \pi \varepsilon$. Since ε is arbitrary, $\int_{L} \frac{g(z)}{z-z_{0}} d z=\int_{L} \frac{g\left(z_{0}\right)}{z-z_{0}} d z=g\left(z_{0}\right) \int_{L} \frac{1}{z-z_{0}} d z=g\left(z_{0}\right) 2 \pi i$.
To obtain the general formula, differentiate both sides with respect to z_{0}.

References:

[1] J. Conway, Functions of one complex variable, Springer-Verlag, 1978
[2] T. Hungerford, Algebra, Holt, Rinehart and Winston, 1974
[3] R. Narasimhan, Complex analysis in one variable, Birkhäuser, 1985
[4] R. Silverman, Introductory complex analysis, Dover, 1972

