Complex Calculus

Complex numbers: Let $R = \mathbf{R}[X]$ be the univariate polynomial ring $\mathbf{R}[X]$ (free commutative **R**-algebra on $\{X\}$). It is a principal ideal domain (III.6.4 [2]), so the ideal M generated by $X^2 + 1$ is maximal and $\mathbf{C} \stackrel{\text{def}}{=} R/M$ is a field. We let i = [X]. If $z \in \mathbf{C}$, then uniquely z = a + ib, where $a, b \in \mathbf{R}$, so $\mathbf{C} \cong \mathbf{R}^2$ as a complete normed real vector space, where we define the complex conjugate $\overline{a+ib} = a-ib$. and modulus $|z| \stackrel{\text{def}}{=} \sqrt{z\overline{z}}$. In polar coordinates $z = r\cos\theta + ir\sin\theta$, where r = |z| and $\theta = \arg z$ (angle). Multiplication adds angles, suggesting exponential notation $z = re^{i\theta}$ (confirmed by Taylor series).

Differentiation: The differential df of a complex function f(z) is a C-linear map of Δz that approximates $\Delta f = f(z + z)$ $\Delta z - f(z)$ at z. We write $\Delta f = df + \varepsilon$ and require that with z fixed, $\varepsilon/\Delta z \to 0$ as $\Delta z \to 0$. A C-linear map of Δz must be of the form $\Delta z \mapsto c\Delta z$, so $df = c(z)\Delta z$. The coefficient c(z) is called the derivative of f and is denoted f'. Since $\varepsilon/\Delta z \to 0$, $f'(z) = \lim_{\Delta z \to 0} \Delta f / \Delta z$ (see Theorems 3.1–2 [4]). If df exists on a *domain*, i.e. an open connected (thus, path connected) set $\Omega \subseteq \mathbf{C}$, f is called *holomorphic* ($f \in \mathcal{H}(\Omega)$). In fact, $f \in \mathcal{H}(\Omega) \Leftrightarrow f$ is *analytic* (locally representable by power series).

Cauchy-Riemann equations: We can consider f as a real vector function by letting z = x + iy and f = u + iv, where u and v are real functions of x and y. Then $df = du + i dv = (u_x dx + u_y dy) + i(v_x dx + v_y dy)$. This is a C-linear map of $dz = dx + i \, dy \Leftrightarrow a \stackrel{\text{def}}{=} u_x = v_y$ and $b \stackrel{\text{def}}{=} v_x = -u_y$. In this case $df = (a + ib)(dx + i \, dy)$, so f' = a + ib.

Looman-Menschoff theorem: If f is holomorphic, we get the Cauchy-Riemann equations $u_x = v_y$, $v_x = -u_y$. Conversely if u_x, u_y, v_x, v_y exist and are continuous, then f is differentiable as a real vector function. Let df = du + i dv. The C-R equations $\Rightarrow df$ is C-linear, so f is holomorphic. In fact, we need not require the continuity of the partials (see 1.6 [3]).

Properties of differentiation: For algebraic operations and composition the rules are the same as in real calculus.

Curves and partitions: Let Ω be a domain and let $[a, b] \subseteq \mathbf{R}$ and $c: [a, b] \to \Omega$ be continuous. The image of c is a curve in Ω . A partition of [a, b] is a finite subset containing the endpoints. For a partition $P = \{a_0 = a < a_1 < \dots < a_n = b\}$ of [a, b], define $|P| = \max_{\substack{k=0\\k=0}}^{n-1} (a_{k+1} - a_k)$. The set of all partitions is a directed set and $P \subseteq Q \Rightarrow |P| \ge |Q|$.

Riemann-Stieltjes sums: Given a partition P, choose $a_k^* \in [a_k, a_{k+1}]$. Let $z_k = c(a_k), \Delta z_k = z_{k+1} - z_k, z_k^* = c(a_k^*), \Delta z_k = z_k - z_k, z_k^* = c(a_k^*), \Delta z_k = z_k - z_k$ $L_P = \sum_{k=0}^{n-1} |\Delta z_k|, \text{ and } S_P = \sum_{k=0}^{n-1} f(z_k^*) \Delta z_i. \text{ If } c \text{ has bounded variation, i.e. } |L| \stackrel{\text{def}}{=} \int_L |dz| \stackrel{\text{def}}{=} \sup_P L_P < \infty, L \text{ is called rectifiable.}$

Integrals: Since [a, b] is compact and c is continuous, L is compact. If f is continuous $(f \in \mathcal{C}(\Omega))$, then it is uniformly continuous on L, so if $\varepsilon > 0$, $\exists \delta > 0$ with $|w_1 - w_2| < \delta \Rightarrow |f(w_1) - f(w_2)| < \varepsilon$. Let $\varepsilon_m \to 0$ monotonically and let I_m be the closure of $\{S_P: |P| < \delta_m\}$. Then $I_m \supseteq I_{m+1}$ and diam $I_m \le 2\varepsilon_m |L| \to 0$, so by Cantor's Theorem $\bigcap_{n=1}^{\infty} I_m = \{I\} \stackrel{\text{def}}{=} \int_{I_n} f(z) dz$ (see IV.1.4 [1]). The integral I does not depend on the choice of parametrization c (see IV.1.13 [1]).

Example: If c(t) is smooth, dz = c'dt. Let $c(t) = e^{it}$, $-\pi < t \le \pi$ (unit circle) and f(z) = 1/z. Then $dz = ie^{it} dt$ and $\int_{c} f(z) \, dz = i \int_{-\pi}^{\pi} f(e^{it}) \, e^{it} \, dt = i \int_{-\pi}^{\pi} \frac{1}{e^{it}} \, e^{it} \, dt = i \int_{-\pi}^{\pi} dt = 2\pi i.$

Properties of integration: The integral is linear in f and additive in L. If $|f| \le M$ on L, then $\left| \int_{L} f(z) dz \right| \le M |L|$. **Cauchy-Goursat-Morera theorem:** If $f \in \mathcal{C}(\Omega)$, then $f \in \mathcal{H}(\Omega) \Leftrightarrow \int_{L} f(z) dz = 0$ for all boundary L ($[L] = 0 \in H_1(\Omega)$). Proof: If $f \in \mathcal{H}(\Omega)$, then f(z) dz is closed. Indeed, df = f' dz, so $d(f dz) = f' dz \wedge dz = 0$. Since [L] = 0, there exists a 2-chain $D \subseteq \Omega$ with $\partial D = L$. If f' is continuous, Green's theorem shows $\int_T f(z) dz = \int_D d(f(z) dz) = 0$. Continuity of f' need not be assumed (Goursat) (see e.g. Theorem 1.2.2 [3]). To prove the converse (Morera) we may assume that Ω is a disc. Let $w_0, w \in \Omega$. If L_1, L_2 are paths from w_0 to w, then $L_2 - L_1$ is a boundary. Thus, $F(w) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(z) dz$ is path independent and F' = f. But Cauchy's integral formula (below) implies that F' is differentiable.

Deformation principle: If $f \in \mathcal{H}(\Omega)$ and $[L_1] = [L_2]$, then $I(L_1, f) = I(L_2, f)$. We get a bilinear map $I: H_1(\Omega) \times \mathcal{H}(\Omega) \to \mathbb{C}$. **Cauchy's Integral Formula:** If $g \in \mathcal{H}(\Omega)$, $z_0 \in \Omega$ and L is a boundary simple closed rectifiable oriented curve around z_0 , then $\int_{L} \frac{g(z)}{(z-z_0)^{k+1}} dz = 2\pi i c_k$, where $c_k = \frac{g^{(k)}(z_0)}{k!}$. In particular, g is \mathcal{C}^{∞} and c_k are its Taylor coefficients. *Proof:* Deform L to a circle of radius r around z_0 . Let $\varepsilon > 0$. By continuity of g, $\exists r > 0$ with $|z - z_0| \Rightarrow |g(z) - g(z_0)| < \varepsilon$. Then $\left| \int_{L} \frac{g(z) - g(z_0)}{z - z_0} dz \right| \le 2\pi\varepsilon$. Since ε is arbitrary, $\int_{L} \frac{g(z)}{z - z_0} dz = \int_{L} \frac{g(z_0)}{z - z_0} dz = g(z_0) \int_{L} \frac{1}{z - z_0} dz = g(z_0) 2\pi i$. To obtain the general formula, differentiate both sides with respect to z_0 .

References:

- [1] J. Conway, Functions of one complex variable, Springer-Verlag, 1978
- [2] T. Hungerford, Algebra, Holt, Rinehart and Winston, 1974
- [3] R. Narasimhan, Complex analysis in one variable, Birkhäuser, 1985
- [4] R. Silverman, Introductory complex analysis, Dover, 1972