Parametric curves and integration

Parametrization: Suppose $s:[a, b] \rightarrow \mathbf{R}^{n}$ is a smooth parametric curve. Intuitively it helps to think of the parameter t as time $(a \leq t \leq b)$ and $s(t)$ as a position vector (a point) in space at a given time t. As t varies from a to $b, s(t)$ traces out a geometric curve in \mathbf{R}^{n} from one endpoint to the other: from $s(a)$ to $s(b)$. The direction of travel is called orientation and is usually expressed by drawing an arrow along the curve.

Reparametrization: A different parametrization of the same geometric curve can be obtained by smoothly slowing down or speeding up t. We introduce a new time parameter τ which depends smoothly and monotonically on t (and vice versa). In other words, $\tau:[a, b] \rightarrow[c, d]$ is an invertible function of t in the category of smooth maps. Such new time τ is called a reparametrization (cf. Def. 6.1.3, p. 378). By abuse of notation let us use τ to denote both the new parameter and the function. The two parameters are related by $\tau=\tau(t)$ and $t=\tau^{-1}(\tau)$. We get a new parametrization of the curve $\sigma:[a, b] \rightarrow \mathbf{R}^{n}$ by substituting the new time τ into the original formula: $\sigma(t)=s(\tau(t))$, i.e. $\sigma=s \circ \tau$ (see Example 6, p. 378).

Orientation: If a reparametrization τ is increasing with t, it is called orientation preserving and if τ is decreasing with t orientation reversing (cf. p. 379).

Relating different parametrizations: Given two different parametrizations s and σ of the same curve, finding the corresponding reparametrization τ can sometimes be done by inspection, as in Example 6, p. 378. The equation $\sigma=s \circ \tau$ (see above) is an implicit formula for τ. Explicitly $\tau(t)=s^{-1}(\sigma(t))$, i.e. $\tau=s^{-1} \circ \sigma$ (see the diagram above).

Integration: We can integrate vector or scalar fields along a curve by reducing the problem to integration with respect to a single parameter t:

$$
\int F \cdot d s=\int F(s(t)) \cdot d(s(t))=\int_{a}^{b} F(s(t)) \cdot s^{\prime}(t) d t, \quad \int f|d s|=\int f(s(t))|d(s(t))|=\int_{a}^{b} f(s(t))\left|s^{\prime}(t)\right| d t
$$

Invariance of integration: Integration along a curve does not depend on parametrization (except possibly for sign). Suppose τ is orientation preserving. Then $\tau(a)=c$ and $\tau(b)=d$, so using the substitution $\tau=\tau(t)$

$$
\int F \cdot d \sigma=\int_{a}^{b} F(\sigma(t)) \cdot d(\sigma(t))=\int_{a}^{b} F(s(\tau(t))) \cdot d(s(\tau(t)))=\int_{c}^{d} F(s(\tau)) \cdot d(s(\tau))=\int F \cdot d s
$$

Suppose τ is orientation reversing, then $\tau(a)=d$ and $\tau(b)=c$, so we need a minus sign to straighten the situation out. The case of scalar field integration is handled similarly.

Application: One reparametrization, often used in computational mathematics, is reparametrization by arclength. We let $\tau(t)$ be the arclength between $s(a)$ and $s(t)$:

$$
\tau(t)=\int_{s(a)}^{s(t)}|d s|=\int_{a}^{t}\left|s^{\prime}(t)\right| d t
$$

By the Fundamental Theorem of Calculus $\tau^{\prime}(t)=\left|s^{\prime}(t)\right|$. Therefore, with the new time τ the speed is

$$
\left|\frac{d s}{d \tau}\right|=\left|\frac{d s}{d t} \frac{d t}{d \tau}\right|=\left|\frac{d s}{d t}\right| /\left|\frac{d \tau}{d t}\right|=\left|s^{\prime}(t)\right| /\left|s^{\prime}(t)\right|=1
$$

One useful consequence is the fact that acceleration $d^{2} s / d \tau^{2}$ is perpendicular to the curve (i.e. perpendicular to $d s / d \tau$, which is tangent to the curve). This follows immediately by implicit differentiation of the equation $(d s / d \tau) \cdot(d s / d \tau)=1$.
Interpretation: Integrals along curves often occur in physics. For example, if f is linear density along the curve, then $f|d s|=d m$, where m is mass. To interpret vector field integration let us parametrize by arclength. Then velocity $d s / d \tau$ is a unit vector, so $F \cdot d s / d \tau$ is the component of F along the curve. Therefore, the integral of a vector field can be interpreted as scalar integration of the component of the vector along the curve. For example, if F is a force field, then $F \cdot d s=d W$, where W is the work performed by the force along the curve.
Reference: S. J. Colley, Vector Calculus, Prentice-Hall, 1999.

[^0]
[^0]: Copyright 1999 Dmitry Gokhman

