
Parametric curves and integration

Parametrization: Suppose s : [a, b]→Rn is a smooth parametric curve. Intuitively it helps to think of the parameter t as
time (a ≤ t ≤ b) and s(t) as a position vector (a point) in space at a given time t. As t varies from a to b, s(t) traces out a
geometric curve in Rn from one endpoint to the other: from s(a) to s(b). The direction of travel is called orientation and is
usually expressed by drawing an arrow along the curve.
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Reparametrization: A different parametrization of the same geometric curve can be obtained by smoothly slowing down
or speeding up t. We introduce a new time parameter τ which depends smoothly and monotonically on t (and vice versa).
In other words, τ : [a, b]→ [c, d] is an invertible function of t in the category of smooth maps. Such new time τ is called a
reparametrization (cf. Def. 6.1.3, p. 378). By abuse of notation let us use τ to denote both the new parameter and the function.
The two parameters are related by τ = τ(t) and t = τ−1(τ). We get a new parametrization of the curve σ : [a, b]→Rn by
substituting the new time τ into the original formula: σ(t) = s(τ(t)), i.e. σ = s ◦ τ (see Example 6, p. 378).
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Orientation: If a reparametrization τ is increasing with t, it is called orientation preserving and if τ is decreasing with t —
orientation reversing (cf. p. 379).

Relating different parametrizations: Given two different parametrizations s and σ of the same curve, finding the
corresponding reparametrization τ can sometimes be done by inspection, as in Example 6, p. 378. The equation σ = s ◦ τ
(see above) is an implicit formula for τ . Explicitly τ(t) = s−1(σ(t)), i.e. τ = s−1 ◦ σ (see the diagram above).

Integration: We can integrate vector or scalar fields along a curve by reducing the problem to integration with respect to
a single parameter t:

∫

F · ds =

∫

F (s(t)) · d(s(t)) =

∫ b

a

F (s(t)) · s′(t) dt,

∫

f |ds| =

∫

f(s(t)) |d(s(t))| =

∫ b

a

f(s(t)) |s′(t)| dt.

Invariance of integration: Integration along a curve does not depend on parametrization (except possibly for sign).
Suppose τ is orientation preserving. Then τ(a) = c and τ(b) = d, so using the substitution τ = τ(t)

∫

F · dσ =

∫
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F (σ(t)) · d(σ(t)) =

∫

b

a

F (s(τ(t))) · d(s(τ(t))) =

∫

d

c

F (s(τ)) · d(s(τ)) =

∫

F · ds.

Suppose τ is orientation reversing, then τ(a) = d and τ(b) = c, so we need a minus sign to straighten the situation out. The
case of scalar field integration is handled similarly.

Application: One reparametrization, often used in computational mathematics, is reparametrization by arclength. We let
τ(t) be the arclength between s(a) and s(t):

τ(t) =

∫

s(t)

s(a)

|ds| =

∫

t

a

|s′(t)| dt

By the Fundamental Theorem of Calculus τ ′(t) = |s′(t)|. Therefore, with the new time τ the speed is
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= |s′(t)| / |s′(t)| = 1.

One useful consequence is the fact that acceleration d2s/dτ2 is perpendicular to the curve (i.e. perpendicular to ds/dτ , which
is tangent to the curve). This follows immediately by implicit differentiation of the equation (ds/dτ) · (ds/dτ) = 1.

Interpretation: Integrals along curves often occur in physics. For example, if f is linear density along the curve, then
f |ds| = dm, where m is mass. To interpret vector field integration let us parametrize by arclength. Then velocity ds/dτ is a
unit vector, so F · ds/dτ is the component of F along the curve. Therefore, the integral of a vector field can be interpreted
as scalar integration of the component of the vector along the curve. For example, if F is a force field, then F · ds = dW ,
where W is the work performed by the force along the curve.

Reference: S. J. Colley, Vector Calculus, Prentice-Hall, 1999.
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