Convergence of Fourier series in the mean of L_2 and L_1

Gram-Schmidt orthonormalization: Suppose $\{\psi_k : k \in \mathbf{Z}_+\}$ is linearly independent. $\varphi_1 := \psi_1 / |\psi_1|_2, \varphi_2 := \psi_2 - \langle \psi_2, \varphi_1 \rangle$, normalize $\varphi_2, \varphi_3 := \psi_3 - \langle \psi_3, \varphi_2 \rangle - \langle \psi_3, \varphi_1 \rangle$, normalize φ_3 , etc. Then $\{\varphi_k \colon k \in \mathbb{Z}_+\}$ is orthonormal. This shows that starting with a Riesz basis we can produce an orthonormal one.

From now on $\{\varphi_k : k \in \mathbf{Z}_+\}$ will be considered orthonormal.

$$\begin{aligned} \mathbf{Approximation:} \ \varepsilon &:= \left| u - \sum_{k=1}^{n} c_k \varphi_k \right|_2 \text{ is minimized by } c_k = \widehat{u}_k := \langle u, \varphi_k \rangle. \text{ Proof: } \langle \varepsilon, \varepsilon \rangle = |u|_2^2 - \sum_{k=1}^{n} |\widehat{u}_k|^2 + \sum_{k=1}^{n} |\widehat{u}_k - c_k|^2. \end{aligned}$$
$$\begin{aligned} \mathbf{Bessel's inequality:} \left| u - \sum_{k=1}^{n} \widehat{u}_k \varphi_k \right|_2^2 = |u|_2^2 - \sum_{k=1}^{n} |\widehat{u}_k|^2, \text{ so } \sum_{k=1}^{n} |\widehat{u}_k|^2 \leq |u|_2^2. \end{aligned}$$

Convergence: $\sum_{k=1} \widehat{u}_k \varphi_k \to u$ in the mean.

Proof: $\left|\sum_{k=m}^{n} c_k \varphi_k\right|_2^2 = \sum_{k=m}^{n} |c_k|^2$, so by Bessel's inequality and the Riesz-Fischer theorem the the series converges in the mean. Let v denote the limit. Then $\langle v, \varphi_k \rangle = \langle u, \varphi_k \rangle$, so $u - v \perp$ to all φ_k .

Parseval's formula: ¹ $\langle \hat{u}, \hat{v} \rangle = \langle u, v \rangle$. The Fourier transform is a linear isometry.

Proof: As $n \to \infty$, Bessel's inequality becomes an equality, i.e. $|\hat{u}|_2 = |u|_2$. Now use the polarization formula.

Hausdorff-Young inequality: $|\hat{u}|_q \leq |u|_p$ for $1 \leq p \leq 2$.

Fourier basis: $\{\exp(ik\theta): k \in \mathbf{Z}\}\$ is an orthonormal Riesz basis for $L_2(\mathbf{T})$. Proof: exercise.

Fourier transform: $\chi := 1_{\mathbf{T}}, \varphi_k := \chi^k(\exp(i\theta)) = \exp(ik\theta)$

*
$$\mathscr{F}: L_2(\mathbf{T}) \to \ell_2, \ \mathscr{F}u := \widehat{u}, \ \text{where } \widehat{u}_k := \langle u, \varphi_k \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\theta) \exp(-ik\theta) \, d\theta. \ \text{Inversion:} \ u(\theta) = \sum_{k=-\infty}^{\infty} \widehat{u}_k \exp(ik\theta)$$

*
$$\mathscr{F}: L_2(\mathbf{R}) \to L_2(\mathbf{R}), \ \mathscr{F}u := \widehat{u}, \text{ where } \widehat{u}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} u(x) \exp(-i\omega x) \, dx. \text{ Inversion: } u(x) = \int_{-\infty}^{\infty} \widehat{u}(\omega) \exp(i\omega x) \, dx$$

Properties of the Fourier transform on $L_1(\mathbf{T})$: (since $|\exp(ik\theta)| = 1$, Fourier transform makes sense on $L_1(\mathbf{T})$)

- ✤ ℱ is linear.
- $\ast \widehat{\overline{u}}(k) = \overline{\widehat{u}(-k)}$

* Shift:
$$u_{\tau}(\theta) := u(\theta - \tau)$$
. $\widehat{u_{\tau}}(k) = \widehat{u}(k) \exp(-ik\tau)$.

* Convolution: $u * v := \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\theta - \tau)v(\tau) d\tau$. ² $\widehat{u * v} = \widehat{u}\widehat{v}$. $\varphi_k * u = \widehat{u}_k \varphi_k$

Linear functionals: A linear functional is a linear map on a functional space to C.

A linear functional A is called bounded (continuous) if $\exists M$ with $|Au| \leq M |u|$.

Representable functionals: given $v \in L_2$ the map $L_2 \to \mathbf{C}$ defined by $u \mapsto \langle u, v \rangle$ is a bounded linear functional.

Riesz representation theorem: ³ Every bounded linear functional on L_2 is representable (uniquely).

The linear functional $u \mapsto u(0)$ is not representable. It is called the Dirac δ -functional and denoted by δ .

By abuse of notation it is sometimes called a function and some write $\int u(x)\delta(x) dx = u(0)$. Fact: $\delta * u = u$.

Summability kernels: A summability kernel on $L_1(\mathbf{T})$ is a uniformly bounded sequence of $K_n \in L_1$ with integrals 1 such that $K_n \to \delta$ (the Dirac comb), i.e. $\langle \varphi, K_n \rangle \to \varphi(0)$. In this case $K_n * u \to u$.

Fejér kernel and Cesaro sums: $K_n := \sum_{i=1}^n \left[1 - \frac{|k|}{n+1}\right] \exp(ik\theta) = \frac{1}{n+1} \left[\frac{\sin\left(\frac{n+1}{2}\theta\right)}{\sin\left(\frac{1}{2}\theta\right)}\right]^2$

Proof: $\sin^2\left(\frac{1}{2}\theta\right) = \frac{1}{2}(1-\cos\theta) = -\frac{1}{4}\exp(-i\theta) + \frac{1}{2} - \frac{1}{4}\exp(i\theta)$. Now multiply. $\sigma_n := K_n * u = \frac{1}{n+1} \sum_{k=0}^n s_k, \text{ where } s_k := \sum_{m=-k}^k \widehat{u}_j \exp(im\theta) \text{ are the partial Fourier sums.}$

Cesaro sums converge to u in L_1 norm, so trigonometric polynomials are dense in $L_1(\mathbf{T})$. Also $\hat{u} = 0 \Rightarrow u = 0$.

References:

F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar, 1955 (Dover, 1990)

Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, 1968 (Dover, 1976)

Copyright 2000 Dmitry Gokhman

 $^{^{1}}$ For the continuous Fourier transform this is known as Plancherel's theorem

 $^{^2}$ Convolution is associative, commutative, and distributes over +.

³ due to Fréchet and Riesz (1907)