
Convergence of Fourier series in the mean of L2 and L1

Gram-Schmidt orthonormalization: Suppose {ψk : k ∈ Z+} is linearly independent. ϕ1 := ψ1/ |ψ1|2, ϕ2 := ψ2−〈ψ2, ϕ1〉,
normalize ϕ2, ϕ3 := ψ3 − 〈ψ3, ϕ2〉 − 〈ψ3, ϕ1〉, normalize ϕ3, etc. Then {ϕk: k ∈ Z+} is orthonormal.
This shows that starting with a Riesz basis we can produce an orthonormal one.
From now on {ϕk: k ∈ Z+} will be considered orthonormal.
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Bessel’s inequality:
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ûkϕk

∣∣∣∣∣

2

2

= |u|2
2
−

n∑

k=1

|ûk|
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Convergence:
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ûkϕk → u in the mean.

Proof:
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, so by Bessel’s inequality and the Riesz-Fischer theorem the the series converges in the mean.

Let v denote the limit. Then 〈v, ϕk〉 = 〈u, ϕk〉, so u− v ⊥ to all ϕk.

Parseval’s formula: 1 〈û, v̂〉 = 〈u, v〉. The Fourier transform is a linear isometry.
Proof: As n→ ∞, Bessel’s inequality becomes an equality, i.e. |û|

2
= |u|

2
. Now use the polarization formula.

Hausdorff-Young inequality: |û|q ≤ |u|p for 1 ≤ p ≤ 2.

Fourier basis: {exp(ikθ): k ∈ Z} is an orthonormal Riesz basis for L2(T). Proof: exercise.

Fourier transform: χ := 1T, ϕk := χk(exp(iθ)) = exp(ikθ)

✺
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: L2(T)→`2,
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u := û, where ûk := 〈u, ϕk〉 =
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u(θ) exp(−ikθ) dθ. Inversion: u(θ) =
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✺
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: L2(R)→L2(R),
�
u := û, where û(ω) =
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∫
∞
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u(x) exp(−iωx) dx. Inversion: u(x) =
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∞
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û(ω) exp(iωx) dx

Properties of the Fourier transform on L1(T): (since |exp(ikθ)| = 1, Fourier transform makes sense on L1(T))

✺
�

is linear.

✺ û(k) = û(−k)

✺ Shift: uτ (θ) := u(θ − τ). ûτ (k) = û(k) exp(−ikτ).

✺ Convolution: u ∗ v :=
1

2π

∫ π
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u(θ − τ)v(τ) dτ . 2 û ∗ v = ûv̂.

✺ ϕk ∗ u = ûkϕk

Linear functionals: A linear functional is a linear map on a functional space to C.
A linear functional A is called bounded (continuous) if ∃M with |Au| ≤M |u|.
Representable functionals: given v ∈ L2 the map L2 → C defined by u 7→ 〈u, v〉 is a bounded linear functional.

Riesz representation theorem: 3 Every bounded linear functional on L2 is representable (uniquely).

The linear functional u 7→ u(0) is not representable. It is called the Dirac δ-functional and denoted by δ.
By abuse of notation it is sometimes called a function and some write

∫
u(x)δ(x) dx = u(0). Fact: δ ∗ u = u.

Summability kernels: A summability kernel on L1(T) is a uniformly bounded sequence of Kn ∈ L1 with integrals 1 such
that Kn → δ (the Dirac comb), i.e. 〈ϕ,Kn〉 → ϕ(0). In this case Kn ∗ u→ u.

Fejér kernel and Cesaro sums: Kn :=
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exp(iθ). Now multiply.

σn := Kn ∗ u =
1
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sk, where sk :=
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ûj exp(imθ) are the partial Fourier sums.

Cesaro sums converge to u in L1 norm, so trigonometric polynomials are dense in L1(T). Also û = 0 ⇒ u = 0.
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1 For the continuous Fourier transform this is known as Plancherel’s theorem
2 Convolution is associative, commutative, and distributes over +.
3 due to Fréchet and Riesz (1907)


