Newton's binomial and Pascal's triangle

Playing lotto: You have n numbered balls and k balls are picked out in sequence ($0 \leq k \leq n$). When picking the first ball you have n choices. For the next ball $n-1$ choices remain, and so on. Thus, the number of different ways this can be done, denoted by A_{k}^{n}, is $n(n-1) \ldots(n-k+1)$. In the special case when $k=n$ we have $A_{n}^{n}=n(n-1) \ldots 1$, which is denoted by $n!(n$ factorial). This is the number of ways n balls can be reordered (permuted). Note that since there is only one way permute no balls, $0!=1$. With this notation we have

$$
A_{k}^{n}=n(n-1) \ldots(n-k+1)=\prod_{i=0}^{k-1}(n-i)=\frac{n!}{(n-k)!}
$$

Making choices: Despite the fact that the balls are picked out in sequence, their order does not affect your success at lotto. We may consider any sequences of length k consisting of the same set of balls as equivalent. The number of such sequences is $A_{k}^{k}=k!$. Thus, the number of truly different selections, denoted by C_{k}^{n}, is

$$
C_{k}^{n}=\frac{A_{k}^{n}}{A_{k}^{k}}=\frac{n(n-1) \ldots(n-k+1)}{k!}=\frac{n!}{k!(n-k)!}
$$

Splitting choices: Factorials get huge pretty quickly, so taking their ratios is not the best way to compute. One way to ease the computation is to split the choice. If you choose k balls out of n you will either pick the first one or not. If you pick the first ball, you still have to choose $k-1$ more out the remaining $n-1$ balls. If you don't pick the first ball, you must pick all k balls out of the remaining $n-1$. Thus,

$$
C_{k}^{n}=C_{k-1}^{n-1}+C_{k}^{n-1}
$$

This idea of recursion is behind the Pascal triangle construction which offers fast computation of C_{k}^{n}. Here are the first few rows of Pascal's triangle

1

$$
11
$$

121
1331
14641

Thus, for example $C_{1}^{3}=3$ and $C_{2}^{4}=6$. Note how each entry is the sum of the entries above it. Also note the obvious symmetry $C_{k}^{n}=C_{n-k}^{n}$.
Foiling: To raise a binomial $a+b$ to the n-th power let us write it as a product of n factors $(a+b)^{n}=$ $(a+b)(a+b) \ldots(a+b)$ and use the distributive law to multiply things out (this is called foiling). The result will be a sum of products of a 's and b 's with the total power n. Let us collect terms with same powers of a (the power of b must be n minus the power of a). If we choose a in each factor $a+b$ we obtain a^{n}. If we replace one of the a 's with b, we can take that b out of any of the n factors $a+b$, so there will be n terms $a^{n-1} b$. In general, if we replace $k a$'s with b 's, we will have C_{k}^{n} terms $a^{n-k} b^{k}$. Thus,

$$
(a+b)^{n}=a^{n}+n a^{n-1} b+C_{2}^{n} a^{n-2} b^{2}+\ldots+b^{n}=\sum_{k=0}^{n} C_{k}^{n} a^{n-k} b^{k}
$$

For example, $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$ and $(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$.

