
Approximation of elliptic boundary value problems

History:

✺ 1950’s: Finite differences and Rayleigh-Ritz-Galerkin

✺ FD: Young (1950) — over relaxation; faster iterative methods for large systems; 5-point schemes

✺ Courant: Variational method with piecewise linear basis functions leads to a 5-point scheme for the Laplace equation.
(forgotten for 20 years)

✺ Decisive step: engineers independently develop finite elements (piecewise polynomial shape functions leads to FD)

Requirements for an appoximation:

✺ stability and optimal stability of approximate problems

✺ convergence of solutions, uniformity and optimal speed of convergence

✺ minimization of error

✺ sparsity and optimal condition number of matrices

Domain: Ω ⊆ Rn — bounded open subset with smooth boundary Γ.

Differentiation: Let p ∈ Zn
+ with 1-norm. Define Dp :=
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Space of test functions: D(Ω) = {u ∈ C∞(Ω) with compact support in Ω}.

For a distribution f define
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by
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Differential operator: Λu :=
∑

|p|,|q|≤k

(−1)|q|Dq[apq(x)Dpu], where apq ∈ L∞(Ω),

Normal boundary derivatives γju (γ0 is just restriction to Γ).

Sobolev space: Hs(Rn) :=
{

u ∈ L2(Rn): (1 + |η|
2
)
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2 û(η) ∈ L2(Rn)
}

=
{
u ∈ L2(Rn): Dpu ∈ L2(Rn), |p| ≤ s

}

Let Hs(Ω) be the space of restrictions to Ω of functions in Hs(Rn). Hs
0(Ω) := closure of D(Ω) in Hs(Ω). Hs(Γ)∼=Hs(Rn−1).

Trace theorem: γ := (γ0, ...γs−1) : Hs(Ω)→

s−1∏

j=0

Hs−j− 1
2 (Γ) is a bounded linear operator and ker γ = Hs

0(Ω).

Energy product: a bilinear form a(u, v) :=
∑

|p|,|q|≤k

∫

Ω

apq(x)DpuDqv dx

Hk(Ω,Λ) :=
{
u ∈ Hk(Ω): Λu ∈ L2(Ω)

}

Green’s formula: ∃! linear operators δj : Hk(Ω)→Hk−j− 1
2 (Γ) (k ≤ j ≤ 2k − 1) such that ∀ u ∈ Hk(Ω,Λ), v ∈ Hk(Ω)

a(u, v) =

∫

Ω

Λu · v dx +

k−1∑

j=0

∫

Γ

δ2k−j−1 u γjv dσ(x)

Neumann problem: Given a forcing function f ∈ L2(Ω) and boundary conditions tj ∈ Hk−j− 1
2 (Γ), k ≤ j ≤ 2k − 1,

we look for u ∈ Hk(Ω,Λ) with Λu + λu = f and δju = tj .

Equivalent formulation: Let (u, v) :=

∫

Ω

u(x) v(x) dx, 〈f, g〉 :=

∫

Γ

f(x) g(x) dσ(x), `(v) := (f, v) +

k−1∑

j=0

〈t2k−j−1, γjv〉.

u is a solution of the Neumann problem ⇔ u ∈ Hk(Ω) and a(u, v) + λ(u, v) = `(v) ∀v ∈ Hk(Ω)

General problem: Suppose V ⊆ H are Hilbert spaces, V is compact and dense in H.
Let a and ` be continuous bilinear and linear forms on V . Find u ∈ V such that a(u, v) + λ(u, v) = `(v) ∀v ∈ V .

Existence-uniqueness theorem: Suppose a is V -elliptic, i.e. a(v, v) ≥ c |v|
2

V ∀v ∈ V and some constant c. If λ is not in
the spectrum of a (a countable set of isolated points), then the solution exists and is unique.

Proof: The result follows from the Lax-Milgram theorem and the Riesz-Fredholm theorem.
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