Approximation of elliptic boundary value problems

History：
粦 1950＇s：Finite differences and Rayleigh－Ritz－Galerkin
粦 FD：Young（1950）－over relaxation；faster iterative methods for large systems；5－point schemes
粦 Courant：Variational method with piecewise linear basis functions leads to a 5 －point scheme for the Laplace equation． （forgotten for 20 years）
＊Decisive step：engineers independently develop finite elements（piecewise polynomial shape functions leads to FD）

Requirements for an appoximation：

＊stability and optimal stability of approximate problems
粪 convergence of solutions，uniformity and optimal speed of convergence
＊minimization of error
粦 sparsity and optimal condition number of matrices

Domain：$\Omega \subseteq \mathbf{R}^{n}$－bounded open subset with smooth boundary Γ ．
Differentiation：Let $p \in \mathbf{Z}_{+}^{n}$ with 1－norm．Define $D^{p}:=\frac{\partial^{|p|}}{\partial x_{1}^{p_{1}} \partial x_{2}^{p_{2}} \ldots \partial x_{n}^{p_{n}}}$ ．
Space of test functions： $\mathscr{D}(\Omega)=\left\{u \in C^{\infty}(\Omega)\right.$ with compact support in $\left.\Omega\right\}$ ．
For a distribution f define $\frac{\partial f}{\partial x_{i}}$ by $\left\langle\frac{\partial f}{\partial x_{i}}, \varphi\right\rangle:=\left\langle f,-\frac{\partial \varphi}{\partial x_{i}}\right\rangle \forall \varphi \in \mathscr{D}(\Omega)$
Differential operator：$\Lambda u:=\sum_{|p|,|q| \leq k}(-1)^{|q|} D^{q}\left[a_{p q}(x) D^{p} u\right]$ ，where $a_{p q} \in L^{\infty}(\Omega)$ ，
Normal boundary derivatives $\gamma_{j} u\left(\gamma_{0}\right.$ is just restriction to $\left.\Gamma\right)$ ．
Sobolev space：$H^{s}\left(\mathbf{R}^{n}\right):=\left\{u \in L^{2}\left(\mathbf{R}^{n}\right):\left(1+|\eta|^{2}\right)^{\frac{s}{2}} \widehat{u}(\eta) \in L^{2}\left(\mathbf{R}^{n}\right)\right\}=\left\{u \in L^{2}\left(\mathbf{R}^{n}\right): D^{p} u \in L^{2}\left(\mathbf{R}^{n}\right),|p| \leq s\right\}$
Let $H^{s}(\Omega)$ be the space of restrictions to Ω of functions in $H^{s}\left(\mathbf{R}^{n}\right)$ ．$H_{0}^{s}(\Omega):=$ closure of $\mathscr{D}(\Omega)$ in $H^{s}(\Omega) . H^{s}(\Gamma) \cong H^{s}\left(\mathbf{R}^{n-1}\right)$ ．
Trace theorem：$\gamma:=\left(\gamma_{0}, \ldots \gamma_{s-1}\right): H^{s}(\Omega) \rightarrow \prod_{j=0}^{s-1} H^{s-j-\frac{1}{2}}(\Gamma)$ is a bounded linear operator and ker $\gamma=H_{0}^{s}(\Omega)$ ．
Energy product：a bilinear form $a(u, v):=\sum_{|p|,|q| \leq k} \int_{\Omega} a_{p q}(x) D^{p} u D^{q} v d x$
$H^{k}(\Omega, \Lambda):=\left\{u \in H^{k}(\Omega): \Lambda u \in L^{2}(\Omega)\right\}$
Green＇s formula：\exists ！linear operators $\delta_{j}: H^{k}(\Omega) \rightarrow H^{k-j-\frac{1}{2}}(\Gamma)(k \leq j \leq 2 k-1)$ such that $\forall u \in H^{k}(\Omega, \Lambda), v \in H^{k}(\Omega)$

$$
a(u, v)=\int_{\Omega} \Lambda u \cdot v d x+\sum_{j=0}^{k-1} \int_{\Gamma} \delta_{2 k-j-1} u \gamma_{j} v d \sigma(x)
$$

Neumann problem：Given a forcing function $f \in L^{2}(\Omega)$ and boundary conditions $t_{j} \in H^{k-j-\frac{1}{2}}(\Gamma), k \leq j \leq 2 k-1$ ， we look for $u \in H^{k}(\Omega, \Lambda)$ with $\Lambda u+\lambda u=f$ and $\delta_{j} u=t_{j}$ ．
Equivalent formulation：Let $(u, v):=\int_{\Omega} u(x) v(x) d x,\langle f, g\rangle:=\int_{\Gamma} f(x) g(x) d \sigma(x), \ell(v):=(f, v)+\sum_{j=0}^{k-1}\left\langle t_{2 k-j-1}, \gamma_{j} v\right\rangle$ ． u is a solution of the Neumann problem $\Leftrightarrow u \in H^{k}(\Omega)$ and $a(u, v)+\lambda(u, v)=\ell(v) \forall v \in H^{k}(\Omega)$
General problem：Suppose $V \subseteq H$ are Hilbert spaces，V is compact and dense in H ．
Let a and ℓ be continuous bilinear and linear forms on V ．Find $u \in V$ such that $a(u, v)+\lambda(u, v)=\ell(v) \forall v \in V$ ．
Existence－uniqueness theorem：Suppose a is V－elliptic，i．e．$a(v, v) \geq c|v|_{V}^{2} \forall v \in V$ and some constant c ．If λ is not in the spectrum of a（a countable set of isolated points），then the solution exists and is unique．

Proof：The result follows from the Lax－Milgram theorem and the Riesz－Fredholm theorem．

References：

J－P．Aubin，Approximation of elliptic boundary－value problems，Wiley－Interscience， 1972
J．F．Botha，G．F．Pinder，Fundamental concepts in the numerical solution of differential equations，Wiley， 1983
A．H．Zemanian，Distribution theory and transform analysis，McGraw－Hill， 1965 （Dover，1987）
Copyright 2000 Dmitry Gokhman

