Eigenvalues and eigenspaces

Given a vector space V, a subspace W, a linear operator $\mathscr{L}: W \rightarrow V$, and a constant λ, we say that λ is an eigenvalue of \mathscr{L} (relative to W) if the operator $\lambda I-\mathscr{L}: W \rightarrow V$ has a nontrivial kernel (null space). The kernel is called the eigenspace corresponding to λ and its nontrivial elements are called eigenvectors (or eigenfunctions).

Example 1: Let $V=W=\mathscr{C}^{\infty}[0, L]$ and let $\mathscr{L} u=u_{x}$. For any λ the eigenspace has dimension 1 and is generated by $e^{\lambda x}$.
Example 2: Let $\mathscr{D} u=\mathscr{L}(\mathscr{L} u)=u_{x x}$. If $\lambda \neq 0$, the eigenspace has dimension 2 and is generated by $e^{\sqrt{\lambda} x}$ and $e^{-\sqrt{\lambda} x}$. If $\lambda=0$, the eigenspace is generated by 1 and x.
Example 3: Let $W=\{u: u(0)=u(L)=0\}$, then $\lambda=-\omega^{2}$, where $\omega=\frac{n \pi}{L}, n \in \mathbf{Z}$, with eigenspace generated by $\sin (\omega x)$.

Adjoints of operators

If V has an inner (dot) product, then given a linear operator $\mathscr{L}: W \rightarrow V$, the adjoint operator $\mathscr{L}^{*}: W \rightarrow V$ is defined by $(\mathscr{L} u) \cdot v=u \cdot\left(\mathscr{L}^{*} v\right)$ for all u and v in W. If $\mathscr{L}^{*}=\mathscr{L}$, then \mathscr{L} is called self-adjoint.
Example 1: Let $V=W=\mathbf{C}^{n}$ with $u \cdot v=u^{t} \bar{v}$. Given a matrix $A,(A u) \cdot v=(A u)^{t} \bar{v}=u^{t} A^{t} \bar{v}=u \cdot\left(\bar{A}^{t} v\right)$, so $A^{*}=\bar{A}^{t}$. Self-adjoint matrices are called Hermitian. ${ }^{1}$
Example 2: Let $V=\mathscr{C}^{\infty}[0, L], \mathscr{L} u=u_{x}, \mathscr{D} u=u_{x x}$, and $W=\{u: u(0)=u(L)=0\}$.
Then $(\mathscr{L} u) \cdot v=\int_{0}^{L} u_{x} \bar{v} d x=\left.u \bar{v}\right|_{0} ^{L}-\int_{0}^{L} u \bar{v}_{x} d x=-\int_{0}^{L} u \bar{v}_{x} d x=-u \cdot\left(v_{x}\right)$, so $\mathscr{L}^{*}=-\mathscr{L}$. Similarly, $\mathscr{D}^{*}=\mathscr{D}$.
Example 3: Let Ω be a domain in $\mathbf{R}^{n}, V=\mathscr{C}^{\infty} \Omega, W=\left\{u:\left.u\right|_{\partial \Omega}=0\right\}$. Then the Laplacian operator on W is self-adjoint.
Proof: (real-valued case) By Green's second identity ${ }^{2} \int_{\Omega}\left(u \nabla^{2} v-v \nabla^{2} u\right) d V=\int_{\partial \Omega}(u \nabla v-v \nabla u) \cdot d A=0$.
Theorem 1: Eigenvalues of a self-adjoint operator \mathscr{L} are real.
Proof: Let λ be an eigenvalue of \mathscr{L} and u an eigenvector. Then $(\mathscr{L} u) \cdot u=(\lambda u) \cdot u=\lambda(u \cdot u)$.
On the other hand $u \cdot(\mathscr{L} u)=u \cdot(\lambda u)=\bar{\lambda}(u \cdot u)$. Thus, $\lambda=\bar{\lambda}$.
Theorem 2: Eigenvectors of a self-adjoint operator \mathscr{L} corresponding to distinct eigenvalues are orthogonal.
Proof: Let eigenvector u correspond to eigenvalue λ and v to μ. Then $(\mathscr{L} u) \cdot v=(\lambda u) \cdot v=\lambda(u \cdot v)$.
On the other hand $u \cdot(\mathscr{L} v)=u \cdot(\mu v)=\bar{\mu}(u \cdot v)=\mu(u \cdot v)$. Since, $\lambda \neq \mu, u \cdot v=0$.

Copyright 2001 Dmitry Gokhman

[^0]
[^0]: ${ }^{1}$ Charles Hermite (1822-1901)
 ${ }^{2}$ George Green (1793-1841)

