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Introduction

A piecewise linear embedding of a ¢-ball B? in a p-ball B® is called
proper if the boundary of B? is contained in the boundary of B?, and
the interior in the interior. We call p—q the codimension. We show in
Theorem 1 that, if the codimension = 3, then any proper embedding is
unknotted, i.e., the pair of balls is piecewise linearly homeomorphic to a
standard pair. This implies (Theorem 2) the combinatorial unknotting
of spheres in spheres, and of spheres in euclidean space, provided that
the codimension is = 3.

If the codimension = 2, then spheres can be knotted. If the codimen-
sion = 1, the unknotting problem is the same as the combinatorial Schon-
flies conjecture, and, as far as I know, is still unsolved. The problem
is:—Given a piecewise linear embedding of S*~*in S?, p = 4, is the closure
of each component of the complement a combinatorial p-ball? The
answer is yes, if p < 3.

In differential topology the situation is quite different. The combined
results of Brown [2] and Smale [6] prove the differential Schonflies theorem
for p = 6. For higher codimension, Haefliger [3, 4] has shown that S°
differentiably unknots in S? if » > 3(¢ + 1)/2, but can be differentiably
knotted if ¢ + 2 =< p < 8(q + 1)/2. If p—q = 3, this latter knotting is
somewhat delicate, because Smale [6] has shown that the closure of the
complement of a tubular neighbourhood of S? in S? is the same as if S*
were unknotted. The difference between the combinatorial and differen-
tial unknotting of spheres is one of the most marked points of divergence
between the two theories, a divergence which increases as we pass to the
more general problem of isotopies of manifolds in manifolds (see [3, 12,
13]).

In pure topology, knotting can occur with any codimension due to the
existence of wild embeddings. But with a hypothesis of topological local
unknottedness, Brown [2] has proved the topological Schonflies theo-
rem in all dimensions. With a similar hypothesis, Stallings [7] has proved
the topological unknotting of spheres in spheres for codimension = 3.
Although analogous to the theorem we prove here, his theorem is inde-

pendent of ours, because his hypothesis and thesis are both topological,
501



502 E. C. ZEEMAN

whereas our hypothesis and thesis are both combinatorial. Stallings also
obtains a criterion for unknottedness in codimension 2; the criterion is
that the complement be a homotopy circle.

By a deceptive coincidence, the first attempt [9, 10] at the combi-
natorial unknotting of spheres was valid only down to the same dimension
as in the differential case. An improvement of that technique extended
the theorem down to codimension 3, and was announced in [12], and a
short proof of the first interesting case S® in S° was given in [11]. The
general proof however was much more complicated than that presented
here, and I am indebted to John Stallings for suggesting some of the
improvements; in particular the proof of Lemma 7 is his. The crux of
the proof occurs in Lemma 9.

There is an interesting difference between Theorem 1, the unknotting
of balls in balls, and Theorem 2, the unknotting of spheres in spheres.
Theorem 2 is an immediate corollary of Theorem 1, but not vice versa;
the reason is that we run into trouble near the boundary. Theorem 1 is
the more basic because it really combines four separate ideas:

(1) a local unknotting of the smaller ball in the larger;

(2) a global unknotting of the smaller ball in the larger;

(3) a global tubular neighbourhood of the smaller ball in the larger; and
(4) compatible collars to the boundaries of the two balls.

When we try to generalise Theorem 1 from balls to arbitrary bounded
manifolds, the difference between the four concepts becomes apparent.

The first can be extended, because it is an immediate corollary to
Theorems 1 and 2.

The second cannot be extended without further hypotheses. There are
algebraic obstructions to the global unknotting of manifolds in mani-
folds unless they are sufficiently highly connected; in other words there
exist embeddings that are homotopic but not isotopic (see [3, 5, 12, 13]).

The third is unsolved. The extension of (3) to manifolds is a major
outstanding problem in the combinatorial theory. The problem is:—
Given a proper locally unknotted embedding of M? in M?, can a regular
neighbourhood of M? in M? be fibered by (p—q)-balls in a piecewise linear
fashion ? By Theorems 1 and 2, any proper embedding of codimension
= 8 is locally unknotted, and so the fibering can be done locally, but the
difficulty comes in matching the local fiberings to form a global fibering.
In the special case of a ball embedded in a manifold, we can grow the
global fibering out from the centre of the ball like a single crystal (as
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in the proof of Lemma 6 below), but for arbitrary manifolds a new
technique is needed.

The fourth can be extended. We show in Theorem 3 that, given two
bounded manifolds, one properly embedded in the other so as to be local-
ly unknotted on the boundary (which always happens if the codimension
= 3), then we can construct compatible collars to their boundaries. An-
other way of saying this is that we can choose local coordinates so that
the smaller manifold is everywhere orthogonal to the boundary of the
larger manifold.

We conclude the paper by briefly extending Theorems 1, 2, and 8 from
pairs to three or more.

Definitions

We define the standard n-simplex A" as follows: let z,, «,, --- be a
sequence of independent points in Hilbert space, and let A™ = x.x,- - - 2,.
Consequently for each n, A" is a face of A"*'. Let A" denote the boundary
of A*. As usual we define a combinatorial n-ball B" (or a combinatorial
n-sphere S*) to be a finite simplicial complex piecewise linearly homeo-
morphic to A™ (or A**Y). A combinatorial n-manifold M" is a finite sim-
plicial complex whose closed vertex stars are combinatorial n-balls. Let
M, M denote the boundary, interior of M*, respectively. If M*is empty
we call M™ closed ; otherwise we call M" bounded. If B*'isa subcomplex
of B" we call B*! a face of B".

Throughout this paper we shall only be concerned with finite simplicial
complexes. Sometimes we shall revert to polyhedra, in order to avoid
excessive subdivision. By a polyhedron, we mean the space underlying
a finite simplicial complex ; and by a subpolyhedron, we mean the sub-
space underlying a subcomplex of some rectilinear subdivision. When-
ever we say sphere, ball or manifold we shall always mean combinatorial
sphere, combinatorial ball, and combinatorial manifold. Whenever we
say map, homeomorphism or embedding, we shall always mean (with one
exception) piecewise linear map, piecewise linear homeomorphism, and
piecewise linear embedding. The one exception is the projective map =
used in the proof of Lemma 10.

Pairs

Define a (p, q)-sphere-pair, P = (S?, S%), p > q, to be a pair of spheres
such that S?is a subcomplex of S?. Define a (p, q)-ball-pair, Q@ = (B*, BY),
» > q, to be a pair of balls such that B’ is a subcomplex of B? and B‘ is
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properly embedded in B?, i.e., B’c B* and Bic B, Define the
boundary of @ to be the sphere-pair @ = (B2, BY). Bya pair X = (X, X
‘we shall mean either a sphere-pair or a ball-pair.

We can perform certain operations on pairs. The join of a sphere-pair
P = (S?, S8 to a sphere S” is the sphere-pair PS" = (S*S", S°S"). Simi-
larly the join of a sphere-pair to a ball, or the join of a ball-pair to a
sphere or a ball, gives a ball-pair. In particular the join of a pair to a
point is called a cone-pair, and is an example of a ball-pair.

If X = (X" X%, Y=(Y", Y°) are two pairs, we say X contains Y,
written XD Y, if Y"is a subcomplex of X?,and Y* = X’ Y”. In parti-
cular if PO Q, where P = (S?, S% and @ = (B?, BY), then the closure of
the complement

P—Q=(S— B, 5~ B
is a ball pair by Alexander [1, Tl_l. 14:2]. IfQ,isa (p — 1, ¢ — 1)-ball-
pair contained in the boundary @ of a (p, g)-ball-pair Q, we call Q, a face
of Q.

If two pairs X = (X?, X9, Y = (Y?, Y7 are contained in as subcom-
plexes of a larger complex, then we can define the union and intersection .
XUY=(X?rUYr, X°UY, XNY=(X*NnYr XN Y.

In general the union and intersection will be neither sphere-pairs nor
ball-pairs, but they are in two particular cases of importances :

(i) If two ball-pairs intersect in their common boundary, then their
union is a sphere-pair.

(ii) If.two ball-pairs intersect in a common face, then their union is
again a ball-pair.

Both these statements follow at once from Alexander [1].

Two pairs X = (X?, X9, Y = (Y?, Y’ are said to be homeomorphic
if there is a homeomorphism (always piecewise linear of course) of X?*
onto Y? that throws X? onto Y.

Definition of unknottedness

If K is a complex let 3 K denote the suspension of K. The n™ sus-
pension is defined inductively, Z"K = 3(Z"'K), 3'K = K. Define the
standard (p, 9)-ball-pair to be

e = (Zp—qu’ Aa)’
and the standard (p, ¢)-sphere-pair to be the boundary [+ 41 of the
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standard (p + 1, @ + 1)-ball-pair. Since we originally defined A? to be an
explicit face of A?*, it follows that I'” ? is an explicit face of I'»*+% 7+,

Define a ball-pair or a sphere-pair to be unknotted if it is homeomor-
phic to a standard pair. Sometimes it is convenient to use a different
form of words to cover the case when S is (piecewise linearly) embedded
in S?, rather than being a subcomplex of S?: we say that S?is unknot-
ted in S?, if, having chosen a subdivision S? of S? that contains a sub-
complex S¢ covering the image of the embedded S? the sphere-pair
(S?, S9 is unknotted. Similarly for balls.

THEOREM 1. If p — q = 8 then any (p, q)-ball-pair is unknotted.
THEOREM 2. If p — q = 3 then any (p, q)-sphere-pair is unknotted.

The proof of Theorems 1 and 2 is the main burden of this paper. The
proof is by induction on p, keeping the codimension fixed. First we show
in Lemma 1 that Theorem 1, , implies Theorem 2, ,. The main part of
the proof consists of showing, with the help of the next ten lemmas,
that Theorems 1,_, ,_, and 2,_, ,_, together imply Theorem 1, ,, provided
that »p = ¢ + 8. For codimension r the induction begins trivially with
Theorem 1, ,, for this is merely the observation that, given a ball B~
with an interior point B°, then there is a homeomorphism of B" onto the
r-dimensional ‘‘octahedron’’, throwing B° onto the centre of the octa-
hedron. Since the inductive steps are the same for all codimensions = 3,
we can drop the suffix ¢, and let Theorem 1, denote the inductive assump-
tion that Theorem 1is true for all (p’, ¢)-ball-pairs such that p = p’ = q¢ + 3;
let Theorem 2, denote the analogous statement for spheres.

REMARK. Theorem 2 implies that, provided the codimension = 3,
spheres unknot in euclidean space in the sense of [10]. In other words,
given a (piecewise linear) embedding of S? in E?, p — ¢ = 3, then there
exists a (piecewise linear) homeomorphism of E” onto itself throwing S*
onto the boundary of a (¢ + 1)-simplex. For embed E” in S” piecewise

linearly onto the complement of a point «, say. By Theorem 2 there is a.
homeomorphism

h : (Sr’ Sq) N f‘p+1, q+1

onto the standard sphere-pair. Choose a suspension vertex y such that
hx ¢ yA''. Then h~'(yA*"") gives a (¢ + 1)-ball in E* spanning S?. Con-
sequently S¢ is unknotted in E? in the sense of [10] by [10, Th. 1(3)].

LEMMA 1. Theorem 1, implies Theorem 2,.
PRoOF. Let P = (S?, S be a sphere-pair with p — ¢ = 3. Choose a.
vertex £ € S% Then P = Q U 2Q, where Q is the ball-pair Q =
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(S” — st(x, S?), S* — st(z, S?). Let y be the vertex of A**! opposite the
face A?. Then I'»*1 ¢! = 7. U yl.W 7. Any homeomorphism @ —I'”"? given
by Theorem 1, can be extended by mapping z — ¥y to a homeomorphism
P— 17191 Hence P is unknotted. The same argument holds for all
P =D

LEMMA 2. Let @, Q2 be two unknotted (p, q)-ball-pairs. Then any
homeomorphism Q, — Q, can be extended to a homeomorphism Q, — Q,.

PrOOF. Let I' be the standard (p, g)-ball-pair. Let y be the barycentre
of A’ then elementary subdivision gives a homeomorphism I" — yl". For
1 =1, 2 the pair @, is unknotted by hypothesis, and so there is a homeo-
morphism Q; — I'; let f; denote the composition

Q— T —yl'.
Let g denote the composition of the homeomorphisms

I;(fllQl)“ Q1 h Q2 (2] Q2) P

where & is given by the hypothesis. Extend g to g¢: yf‘—»yf‘. The
composition

@ 7 yI ? yP £ Q.

is the homeomorphism required to prove the lemma.

LemMMA 8. Assume Theorem 1,_,, and suppose p — q = 3. Then if
two unknotted (p, ¢)-ball-pairs intersect in a common face their union is
also unknotted.

ProoF. Let @, N Q, = Q,, where Q, is a common face of the two un-
knotted (p, g)-ball-pairs Q,, Q,. LetQ, = @, — Q, and Q, = Q, — Q,. Then
by Theorem 1,_,, Q;, Q,, Q; are unknotted (p — 1, ¢ — 1)-ball-pairs, and
Q, = Q, = Q,. Let T be the suspension of the standard (p — 1, ¢ — 1)-
ball-pair T, and let #,, «, be the two suspension points Choose a homeo-
morphism 4: @, — T'. By Lemma 2 extend 1|Q, to a homeomorphlsm
Q,— x,I. This, together with %, defines a homeomorphism Q, — I" U 2, P
which we can extend, again by Lemma 2, to a homeomorphism Q, — x,T".
Similarly extend % to a homeomorphism @, — x,I'. These two homeo-
morphisms combine to give a homeomorphism Q; U @, — ST', which is
clearly unknotted.

Simplicial collapsing

Recall Whitehead’s collapsing techniques, which he introduced in [8].
Let K be a finite simplicial complex and L a subcomplex. We say there
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is an elementary simplicial collapse from K to L if K — L consists of a
principal simplex of K together with one top-dimensional face. We say
K simplicially collapses to L if there exists a sequence of elementary
simplicial collapses going from K to L. If K simplicially collapses to a
point, we call K simplicially collapsible.

We give next an equivalent polyhedral version of the same idea. It is
advantageous to use both in practice, the choice depending upon whether
the collapse is part of the hypothesis or thesis of the proof in question;
if part of the hypothesis, we generally assume simplicial collapsing (as
in Lemma 7); and if part of the thesis, we generally prove polyhedral
collapsing (as in Lemma 9).

Polyhedral collapsing*

Let X be a polyhedron and Y a subpolyhedron. We say there is an
elementary collapse from X to Y if there exist complexes K, L triangu-
lating X, Y and a ball B" with a face B", such that X = Y U B" and
B ' =Y N B". Wesay X collapses to Y, written X\ Y, if there exists
a finite sequence of elementary collapses going from X to Y. If X col-
lapses to a point we call X collapsible, and write X \,0. In particular
a ball is collapsible. If L is a subcomplex of K, we write K\, L if the
underlying polyhedron of K collapses onto that of L. The relation be-
tween collapsing and simplicial collapsing is contained in [8, Theorems 6
and 7]:

LEMMA 4 (Whitehead). If L is a subcomplex of K, then K\, L if and
only if there is a subdivision aK of K such that aK simplicially col-
lapses onto aLL.

Regular neighbourhoods

Let M be an n-manifold and X a subpolyhedron. A regular meigh-
bourhood of X in M is a subpolyhedron of M such that

(i) N is a closed neighbourhood of X in M,

(ii) N is an m-manifold, and

(i) N\ X.

LeEmMMA 5 (Whitehead). If N,, N, are two regular neighbourhoods of

* There is a slight technical difference between our definition of collapsing K \, L and
Whitehead’s definition of ‘‘geometrical contraction” [8, §5]. Our definition is easier to
use because it is combinatorially invariant and not tied down to any particular triangu-
lation, whereas Whitehead’s process is tied down to subdivisions of K, and his proof of
the combinatorial invariance of his process [8, Corollary to Th. 7] contains a flaw which
is by-passed by the use of our definition.
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X in M, then there is a homeomorphism N,— N, keeping X fixed.

The proof is contained in [8, Th. 28]. Notice that we have stated a
slightly stronger result than that stated by Whitehead, inasmuch as we
have claimed that the homeomorphism is fixed on X, This stronger result
is permissible because we have used a stronger definition of regular
neighbourhood than Whitehead, in that we have included the proviso (i),
that N also be a topological neighbourhood. Consequently, of the se-
quence of regular moves passing from N, to N, that Whitehead uses in
[8, Lemmas 10 and 11] to prove the homeomorphism, none intersects X,
and so X can be left undisturbed during each move. We are now ready
to make the next step towards the proof of Theorems 1 and 2.

LEmMMA 6. Assume Theorems 1,_, and 2,_,. If (B?, B, p —q = 3, is
a ball-pair such that B? \, B, then it is unknotted.

PrROOF. A ball is collapsible; therefore choose a subdivision aB? of B*
that is simplicially collapsible. Extend this to a subdivision aB? of B?.
Let BB” be the second derived complex of «B®. Let N be the closed
simplicial neighbourhood of AB? in SB*. By [8, Theorem 22] Nis a regu-
lar neighbourhood of B? in B?. But the hypothesis indicates that B? is
itself a regular neighbourhood of B? in B?. Therefore Lemma 5 gives a
homeomorphism between the ball-pairs

(B?, BY) — (N, BBY) .

Therefore to prove the lemma, it suffices to show that (N, 8BY) is un-
knotted. Let

aB' = K, N\ Ko\, - LK\ K, =2

be the simplicial collapse of ®B? down to a point x. Let @; be the ball-
pair consisting of the closed simplicial neighbourhoods of K; in
(8B*, BB"). We shall show inductively that @; is unknotted.

The induction begins with @, = xL,, the cone-pair on

L, = (Ik(z, 8B?), Ik(x, BBY)) .

Now L, is either a sphere-pair if « is in the interior of @B?, or a ball-
pair if = is on the boundary of @B?, but in either case is unknotted by
the hypothesis, Theorems 1,_;, and 2,_,. Hence @, is unknotted.

For the inductive step, suppose Q,_, is unknotted, where 1 <1 < k.
Since K\, K;_, is an elementary simplicial collapse, K; — K;_, consists
of a simplex A with a top-dimensional face C, say. Let a, ¢ denote the
barycentres of A, C, respectively. Let @, = aL,, the cone-pair on L, =
(Ik (a, BB?), Ik(a, 8B7), which is unknotted for the same reason as @,
above. Similarly let Q, = ¢L,, which is also unknotted. Now
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QiZQi—1UQaUQc-

But Q;_; and @, intersect in a common face (see [8, p. 295]), and so do
(Q;—. U Q,) and Q,. Hence by applying Lemma 3 twice, we see that @,
is unknotted. At the end of the induction we have Q, = (&, 8B?) un-
knotted, which completes the proof of the lemma.

REMARK. With codimension 2 the previous lemma is no longer true; it
~ is possible to have B?\, B?~* but (B?, B*~*) knotted. For example let
(B*, B?) be the cone-pair on a knotted (S®, S*). Then B*™\, B’ because a
cone collapses onto any subcone, Also with codimension 2, it is possible
to have a ball-pair (B?, B*~*) such that B? does not ™\, B?~? as for example
a knotted arc in a 3-ball. The next lemma shows this cannot happen
with higher codimension.

LemMMA 7. If (B?, BY), p — q = 3, is a ball-pair, then B? \, B".

Once we have proved Lemma 7 we shall have completed the proof of
Theorems 1 and 2, because Lemmas 6 and 7 together provide the induc-
tive step that Theorems 1,_; and 2,_, imply Theorem 1,. However we
shall postpone the proof of Lemma 7 until after that of Lemma 9, be-
cause we shall first have to make some geometrical constructions. Indeed
we have not yet used any geometry that would suggest the significance
of codimension 3.

Shadows

Let I” be the p-cube. We single out the last coordinate for special
reference and write I? = I*~* x I. Intuitively we think of I?™* as
horizontal and I as vertical, and we identify I*~* with I*~* x 0, the base
of the cube I*. Let X be a polyhedron in I?. Imagine the sun, vertically
overhead, causing X to cast a shadow; a point of I? is said to lie in the
shadow of X if it lies vertically below some point of X.

DEFINITION. Let X* be the closure of the set of points of X that lie
in the same vertical line as some other point of X (i.e., the set of points
of X that either lie in the shadow of X or else overshadow some other
point of X). Then X* is a subpolyhedron of X.

LEMMA 8. Let X be a polyhedron in I? such that dim X = q¢ < p and
dim (X N I ) < p — 1. Then there exists a homeomorphism of I® onto
itself throwing X into a position that satisfies the properties:

(i) X does not meet the top or the bottom of the cube;

(ii) X meets any vertical line finitely; and

(iii) dim X* <2¢ — p + 1.
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Proor. Choose a face 172 of I*%, so that I*~* x I is a vertical top-
dimensional face of I?. Since X 7 I* there is a homeomorphism of I”
onto itself throwing X N I* into the interior of this vertical face, satisfy-
ing condition (i). Now triangulate I® so that X is a subcomplex. Then
shift all the vertices of this triangulation by arbitrarily small moves into
general position, in such a way that any vertex in the interior on I” re-
mains in the interior, and any vertex in a face of I” remains inside that
face. If the moves are sufficiently small, the new positions of the vertices
determine an isomorphic triangulation, and a homeomorphism of I” onto
itself. The general position ensures that X is thrown onto a polyhedron
with the desired properties.

Sunny collapsing

Suppose we are given polyhedra Y — X — I?. If there is an elementary
collapse from X to Y, define this collapse to be sumny if no point of
X — Ylies in the shadow of X. We say there is a sunny collapse X\, Y
if there exists a finite sequence of elementary sunny collapses going from
X to Y. If there is a sunny collapse X \, 0, then X is called sunny col-
lapsible. Similarly we can define sunny simplicial collapses between com-
plexes in I?, and deduce:

COROLLARY TO LEMMA 4. X s sumny collapsible if and only if some
triangulation of X is sunny simplicially collapsible.

The proof of the corollary follows from [8, Th. 6], because each ele-
mentary sunny collapse can be factored into a sequence of elementary
simplicial collapses, each of which will be sunny.

LEMMA 9. Suppose (I?, X) is homeomorphic to a (v, q)-ball-pair,
P —q = 3, and suppose X satisfies the three properties of Lemma 8.
Then X ts sunny collapsible.

REMARK. Lemma 9 fails with codimension 2. The classical example of
a knotted arc in I*® gives a good intuitive feeling for the obstruction to a
sunny collapse: looking down from above, it is possible to start collapsing
away until we hit underpasses, which are in shadow and so prevent any
further progress.

Proor oF LEMMA 9. The proof is long, by a complicated induection.
Let Y, = A? and Z, = X. We shall construct inductively two descending
sequences of subpolyhedra

Y oY o DY;D--- DY,
Zy,oZ, D D4;D+DZ,,
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and for each 7, 0 < 7 < q, a homeomorphism
fiiCi— Z;

from C; onto Z,, where C, is the cone on Y;, such that the following four
properties are satisfied:

(1) Y, is everywhere (¢ — © — 1)-dimensional;

Q) dmZ*<q—1— 2

() fiY(Z*) does not contain the vertex of the cone C;, and meets each
generator of the cone finitely; and

(4) there exists a sunny collapse Z,_, \, Z,.
The induction begins with Z, = X and finishes with Z, being a point (Y,
being empty). Therefore the lemma will follow from Property (4), be-
cause the sequence

X=Z,\Z\ - \.Z

shows that X is sunny collapsible.

Beginning of the induction

We have defined Y, = A?, Z, = X. Therefore Property (1) is trivial,
because A’ is everywhere (¢ — 1)-dimensional. Property (2) follows from
Lemma 8 (iii), because (and this is the point where codimension 3 enters)

dmX*=<2¢—-p+1=q—2.

Property (4) is vacuous because Z_, is not defined. There remains to de-
fine the homeomorphism f, so as to satisfy Property (3).

Choose a homeomorphism f: A? — X onto the g-ball X = Z,. Choose a
vertex v in the interior of A? in general position with respect to /(X ™).
General position means that v ¢ f~(X*), and that any straight line in A?
through v meets f~%(X*) finitely. Subdividing A? at v gives a complex
isomorphic to the cone C, on Y, = A?. Define f, = f: C, — Z,, and then
Property (3) is satisfied by construction.

The inductive step

Fix 7,1 <% < q. Suppose we are given the polyhedra Y, ,, Z;_, and
the homeomorphism f;_,: C,_, — Z,_, satisfying the four inductive prop-
erties. We have to define subpolyhedra Y;, Z, and a homeomorphism
Jfi: C; — Z;, and prove the four properties for them. Since the inductive
step is complicated, let us drop the suffix 7 — 1 and retain the suffix <.
That is to say we are given Y =Y,_,, Z = Z,_,, C = the cone on Y, and
J: C— Z; and we shall eventually define Y;, Z; and f..

Let v be the vertex of the cone C, and let W = f(Z*). Then Wisa
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subpolyhedron of C of dimension <¢ — © — 1 (by the inductive Property
(2)) that does not contain v, and meets each generator of the cone finitely
(by the inductive Property (8)). Let 7: W— Y be the map defined by
projecting from the vertex v onto the base Y of the cone C. Now in
general 7 is not piecewise linear, and so it is impossible to find triangu-
lations of W, Y with respect to which « is simplicial; however 7 is projec-
tive, so that we can do the next best thing.

LEMMA 10. There exist triangulations K, L of W, Y such that for
each simplex A< K, mA is a simplex of L of the same dimension.

Proor. Choose some triangulation K, of W. For each simplex 4, € K,
wA, is a simplex contained in Y. The dimension of 7A, is the same as.
that of A, because of the inductive Property (8). As A, runs over the
simplexes in K, the set of image simplexes wA, may criss-cross each
other in Y, but, nevertheless, it is possible to find a triangulation L of
Y, such that every 74, is covered by a subcomplex of L. Lift these sub-
complexes under 7 to form a subdivision K of K,. Then K, L satisfy the
requirements of the lemma.

Definition of Y;

We are now in a position to define Y;. Let Y, be the polyhedron under-
lying the (¢ — ¢ — 1)-skeleton of L. By the inductive Property (1), Y is
everywhere (¢ — 7)-dimensional. Therefore every principal simplex of L
is (¢ — 1)-dimensional, and Y; is everywhere (¢ — 7 — 1)-dimensional.
Hence Property (1) holds for Y;. :

The cone C; = v7Y; is a subcone of C. However it is no'good trying to
define f; = f| C;, because then we should have to have Z, = fC;, D fW =
Z*, and so Z* would in general be of dimension ¢ — 7 — 1, which is too
high for Property (2). In fact this is the crux of the matter: we must
arrange some device for collapsing away the top-dimensional shadows
of Z*,

The first thing to observe is that the triangulation K of W is in no way
related to the embedding of fW = Z* in the cube I?. The images in I?
of the simplexes of K may link around and overshadow each other in an
unpredictable fashion. OQur next task is to take a subdivision K’ of K
that remedies this confusion. Let g: K — I** denote the composition of
Jf followed by vertical projection onto the base of the cube:

KcCtszexcr— .

g
Since g is piecewise linear, we can find subdivisions K’, M of K, I*~! such
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that g: K' — M is simplicial.

Recall that dim K’ =dim W<q — ¢ — 1. Let A, A,, ---, A,, be the
{q — 1 — 1)-simplexes of K’. Each A; is mapped non-degenerately by g,
by Lemma 8 (ii). For each pair A4;, A,,j # k, the interiors /L, ffk are
mapped disjointly by f, and are either mapped disjointly or identified by
g. If gA; + gA, then no point of ffi overshadows any point of f/ik and
vice versa. If gA; = gAk, then vertical prOJectlon establishes a homeo—
morphism between fA and fAk, so that either fA overshadows fAk or
vice versa. Consequently overshadowing induces a partial ordering bet-
ween the A’s, and we choose the ordering A,, A,, - -+, A,, to be compatible
with this partial ordering. We state this in the form of a lemma:

LEMMA 11. All the points of X that overshadow ffik are contained in
U1§i<kaj-

Construction of the blisters

The next step is to construct a little (¢ — ¢ + 1)-dimensional blister J;
about each A; in the cone C. The blisters are the device that enable us
to make the sunny collapse, and the fact that there is just sufficient room
to construct them is an indication of why codimension 3 is a necessary
.and sufficient condition for unknotting.

Choose ¢ > 0 and sufficiently small (the criterion for sufficiently small
will appear at the end of the construction). There are two cases depend-
ing on whether or not A; happens to lie in Y.

Case (i). Suppose A; C Y; then the blister will lie at the bottom of the
cone. Let a; be the barycentre of A;. Let b; be the point on the line va;
(v is the vertex of the cone) a distance ¢ from a;. Since

dimA; =dimK'=¢q—1—1,

A, is contained in a (¢ — ¢ — 1)-simplex D; of K. Since A;C Y, we also
have D;c Y, and so by Lemma 10, D; = nD;e L. By the inductive
Property (1), Yis everywhere (¢ — 7)-dimensional, and so there is at least
one (¢ — 1)-simplex E; € L having D; as a face. Let a/ be the point of the
join of a; to the barycentre of E;, a distance ¢ from a;. Define

Jj = aja;b]'Aj .
Case (ii). Suppose A; ¢ Y; then the blister will lie in the middle of
the cone. Again let a; be the barycentre of A;; then a;¢ Y. By the in-
ductive Property (3) the generator of the cone va; through a; does not

‘meet 4;again. Let b, denote the pair of points on this generator a distance
£ either side of a,;. As before, A, is contained in a (¢ — 7 — 1)-simplex
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D; of K, only this time D; ¢ Y. By Lemma 10, 7D, € L, and again we
can choose a (¢ — 7)-simplex E; e L having nD; as a face. Let a} be the
point on the line joining a; to the barycentre of vE; a distance ¢ from a;.
Again define J; by the same formula

Jj = a/j(l;-bjAj .
Finally choose ¢ sufficiently small for all the blisters to be well defined,

and so that no two overlap more than necessary, i.e., J; N J, = Aj N A,
for each pair 7, k.

The blister

Definition of Z; and f;

We are now in a position to complete the inductive definitions. Recall
that we defined Y, to be the (¢ — 7 — 1)-skeleton of L. Hence C; = vY;,
the cone on Y, is a subcone of C. Therefore, for each j,

Ci N Jj = a/jbjAj .
Define an embedding e: C; — C as follows: let e be; the identity outsic.ieﬂ
all the blisters, and inside the 7" blister map a;b;A; linearly onto a;b;A4;,
for each 5. In other words to obtain the embedding e: C; — C from the
inclusion C; c C, we merely push up all the blisters. Define

fi = fe: Ci - Z ’

and define
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Ze = f iCi .
This completes the inductive definitions. We have already verified Proper-

ty (1); there remains to verify Properties (2), (3) and (4).
To verify Property (2), observe that

ZXcZ;nNZ*
= feC;NfW
=f(eC;N W),

since f is a homeomorphism. But the whole point of our construction of
the embedding ¢ was to push C; away from the interior of the top-dimen-
sional simplexes of K’. Hence ¢C; N W is contained in the (¢ — 7 — 2)-
skeleton of K’. Therefore dim Z* < q — 1% — 2.

The same observation suffices to verify Property (3), because

SiUZ¥) C the (¢ — © — 2)-skeleton of K' C f~Y(Z™) .
By induction Property (8) holds for f~*(Z*) and so it also holds for f;(Z*).

The sunny collapse

Finally we come to Property (4), which is the heart of the matter. Let
J = UisismJ;, the union of all the blisters. Given a (¢ — 1)-simplex
Ee L, let E,, E,denote respectively the closures of vE — J, E — J. Now
E, can be obtained from the (¢ — 7 + 1)-simplex vE by removing one by
one any blisters that happen to protrude into vE; therefore E,, suitably
triangulated, is a (¢ — ¢ + 1)-ball by [1, Corollary 14: 5b]. Similarly F,
is a (¢ — 7)-ball, and a face of E,. Removing the interiors of E, and E,
defines an elementary collapse of C. Doing this successively for all the
(¢ — 7)-simplexes in L defines a collapse

C\C,UJ.
But C;UJ =¢C;UJand f(eC; UJ) = Z; U fJ. Therefore the image
under the homeomorphism f of this collapse determines a sunny collapse
Z\Z;UfJ,

sunny because we have not yet removed any point of Z*,

We now collapse eC; U J \ eC; by collapsing each blister in turn, j =
1,2, .-+, m, as follows. The blister J; is a (¢ — ¢ + 1)-ball, and its inter-
section with eC; (and all the other blisters) is the (¢ — 7)-face ajb;A;.
Therefore we may collapse J; onto this face. The images under f of these
collapses determine a sequence of elementary collapses

ZiU U?ﬁlij\ZiUU;";ilfJi\ \Zi .
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Each of these elementary collapses is sunny by Lemma 11, and by virtue
of our choice of the ordering j =1, 2, - - -, m; because, by the time we come
to collapse fJ,, say, the only points that might have been in shadow are
those in the interior fAk, but these are sunny for we have already:
removed everything that overshadows them. Hence we have demon-
strated a sunny collapse

ZN\Z UfI\\Z; .
The proof of Lemma 9 is complete.

Proof of Lemma 7

We can now return to the proof of Lemma 7, which will conclude the
proof of Theorems 1 and 2. We are given a ball-pair (B?, BY), p — ¢ = 3,
and we have to show that B\, B’. By Lemmas 8 and 9, we can choose
a homeomorphism B?— I® such that B?is thrown onto a sunny collapsible
polyhedron X satisfying the three properties of Lemma 8. It suffices to
show that 77\ X.

DEFINITION. If F is a complex or polyhedron in I?, let F'* denote the
polyhedron consisting of F' together with all points of I”® lying in the
shadow of F. (F'* is quite different from the construction F'* used in
the proofs of Lemmas 8 and 9.) Recall that 77~ denotes the base of the
cube. Let

M=I"y X*.

First we verify that I\, M, as follows. The vertical projection
X — P is piecewise linear, and so we can choose triangulations of X,
I*~* with respect to which it is simplicial. Let L denote the triangulation
of I*~!, For each simplex De L, let D x I denote the prism lying verti-
cally above D. If the interior of the prism meets X, then by Lemma
8 (ii) it meets it in a finite number of simplexes, each of the same dimen-
sion as D and lying vertically above D. Let D, be the topmost of these;
D, does not meet the top or bottom of the prism by Lemma 8 (i). Then
M contains the subprism bounded above by D,, and contains no points
above f) Let D’ denote the subprism bounded below by D,. If, on the
other hand, the interior of D x I does not meet X, let D' = D x I. Con-
sider the elementary collapse of D’ from the top onto the walls and base.
Now enumerate the simplexes of L in order of decreasing dimension,
and the corresponding sequence of elementary collapses determines a
collapse

PN\ M.
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Next we make use of Lemma 9 and the Corollary to Lemma 4. Let K
be a triangulation of X that is simplicially sunny collapsible by the
sequence, say, of elementary simplicial sunny collapses

K=K\ K, \ -\ K, = a point .
Let
M, =I""'UXUK?.

In particular M, = M. We shall complete the proof of Lemma 7 by
showing that

Ip\.Mo\M1\M2\"'\.Mn\X~

The first step I? \, M, we have already demonstrated above. The last
step is easy, because I?* N X = @ by Lemma 8 (i). Therefore M, con-
sists of I?»* and X connected by a single arc K*%. Therefore collapse
M, ™\, X by collapsing I”~* onto the bottom point of the arc, and then
collapsing the arc.

There remain the intermediate steps M, , \, M;, 1 < ¢ < n.

=2 =
= =

We are given a sunny elementary simplicial collapse K,;_, \, K;. Sup-
pose that the collapse is across the simplex A € K, ,, from the face B.
Let a be the vertex of A opposite B. Therefore

K,UA=K,,, KnA=aB.
Let a,, A,, B, be the vertical projections of a, A, B on the base I** of

IP
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the cube; A4,, B, are simplexes of the same dimension as A, B by Lemma
8 (ii). Let A, x I denote the prism lying above A,. Let
U= (K, UuI")NnA x1I),
V=(EKUI*™)NA xI).
Then M;,_, — M; = U — (V U A). Therefore to show M,_, \, M, it suffices
to prove that U\, VU A.

Let us examine U. To begin with U contains the subprism lying
between A and A, (4 does not meet A, by Lemma 8 (i)). Since the collapse
K;_.\, K; is sunny, U contains no points above A U B However U may
contain material above aB in the walls alBl x I of the prism A, x I.

Now examine V. To begin with V agrees with U in the walls a,B, x I
of the prism. However V does not contain A, and in fact

ANV=aB.

Since V is a polyhedron we can find a point « vertically below the bary-
centre of B, such that

ANV =aB.

Let T be the closure of U — zA. Then UD TUAD VUA. We shall
show that we can collapse

UNTUAN, VUA.

TUA VUaA

a

The first step is an elementary collapse across ©A from the free face
#B. For the second step, since (T'U A) — (VU A) = T — V, it suffices
to show that T\, V. We use the same device that we used at the
beginning of the proof of this lemma, as follows. Choose triangulations
of T, V, A, such that the vertical projections T'— A, and V — A, are
simplicial. Let L be the triangulation of A,, and let L, denote the
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subcomplex covering alBl.

Let D be a simplex of L — L,, and let £ = D N L, (possibly E is empty).
The intersection of 7' with the prism D x I above D consists of a non-
degenerate subprism bounded above by a simplex, D, say, contained in
xaB, together with possibly some material above E. Similarly the in-
tersection of V with D x I is a possibly degenerate subprism bounded
above by a simplex, D, say, contained in K; U I*™*, together with the
same material above E. Now D, # D, by our choice of x, and D, N D, is
a common face, perhaps empty, above E. Therefore there is a non-
degenerate subprism, D’ say, bounded above by D, and below by D.,.
Consider the elementary collapse of D’ from the top D, onto the walls
and base D,. Now enumerate the simplexes of L — L, in order of de-
creasing dimension, and the corresponding sequence of elementary col-
lapses determine the required collapse

T\V.

Therefore we have shown U, V U A4, and hence M,_, \, M;, and hence
I\, X. This completes the proof of Lemma 7 and Theorems 1 and 2.

Manifold-pairs

One feature of the unknotting of balls is the straightening up of the
boundaries. The second half of the paper is concerned with generalising
this particular feature to arbitrary manifolds.

Define a manifold-pair V = (M®, M9, p > g, to be a pair of manifolds
such that M? is a subcomplex of M?, and M? is properly embedded in
M? (i.e., M c M® and Mo ch/.f”). Each of the manifolds may or may
not be connected. If both manifolds are closed, we call V closed. If
both manifolds are bounded we call V bounded, and define the boundary
V = (M>®, M?). The third possibility is that M? is bounded and M¢
closed, in which case the boundary V=M ? a single manifold rather
than a manifold-pair.

Local knotting
If A is a simplex of MY, the link of A in V,
k(4, V) = (Ik(4, M"), Ik(4, M?)) ,

is either a ball-pair or a sphere-pair, according as to whether A lies in
the boundary or the interior of M? If the links of all the vertices of
M are unknotted we say V is locally unknotted. If just the links of the
vertices of M* (or M %) are unknotted, we say V is locally unknotted on
the boundary (or in the interior).



520 E. C. ZEEMAN

COROLLARY 1 TO THEOREMS 1 AND 2. If p — q = 3, then V is locally
unkmnotted.

In codimension 2, local knotting can occur, as is shown by the following
examples.

(i) The cone-pair on a knotted (S?, S?) is locally knotted in the interior
at the vertex of the cone, but is locally unknotted on the boundary.

(ii) The suspension V of a knotted (B?, BY) is locally unknotted in the
interior, but locally knotted on the boundary at the suspension points,
although the boundary V itself is both unknotted and locally unknotted.

In codimension 1 it is an open question whether or not local knotting
can occur, owing to the unsolved state of the combinatorial Schonflies
conjecture. The phenomenon of local knotting is therefore restricted to
codimension 2 and possibly codimension 1, and our subsequent remarks
on the subject will refer only to these two cases.

Using the methods of [1], it is straightforward to show that an un-
knotted sphere- or ball-pair is also locally unknotted. Hence if V is
locally unknotted, the link of every simplex (as well as every vertex) of
M is unknotted; if V is locally unknotted in the interior, then the link
of every simplex in the interior of M? is unknotted; and if V is locally
unknotted on the boundary, then the link of every simplex of M? that
meets the boundary is unknotted. It follows that local unknottedness,
local unknottedness in the interior, and local unknottedness on the bound-
ary, are all combinatorial invariants of V (i.e., independent of the trian-
gulation).

Collared manifolds

If M is a manifold, define the collared manifold M+ of M to be the
mapping cylinder of the inclusion M c M. If M is closed then M+ = M.
If M is bounded, then M* is formed from M x I U M by identifying
x x1 = for each x e M. We call M x I the collar.

In this paper, whenever we say manifold we mean combinatorial
manifold, and so to define M+ as a manifold, it is necessary to specify
the triangulation of M*. Now there is no natural triangulation of M+,
but since M * is the mapping cylinder of an embedding, there is a natural
combinatorial structure*, and we choose a convenient triangulation in

* A combinatorial structure is a family of piecewise linearly related triangulations.
The mapping cylinder C of a simplicial map f: K - L between finite simplicial com-
plexes does not possess a matural combinatorial structure unless f is an embedding,
because, although we can use K, L to construct a triangulation of C, we do not in
general obtain a piecewise linearly related triangulation if we start from piecewise
linearly related triangulations of K, L.
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this structure, as follows.

Take the first barycentric derived complex M’ of M. The boundary
M’ is identified with, and therefore triangulates, the bottom M x1of
the collar. Triangulate the top M x 0 of the collar isomorphically; the
top of the collar is the same as the boundary of M* and so we have
defined M* = M’'. For each simplex D in M’', Dx I is a prism in the
collar. Let D° ¢ M+, denote the top of the prism; the bottom of the
prism is identified with D. Order the vertices z,, ,, - -+, @, of D so that
the induced ordering of the simplexes of M, of which they are the bary-
centres, is the order of increasing dimension. By our notation

Dx0=D"=x---a, Dx1=D=uxmw - ,.
Triangulate the prism D x I by the simplexes
200+ XXXy e B, j=0,1-:--,m,

and their faces. Do this for each simplex of M’. The process is com-

patible, in the sense that if E is a face of D, then the triangulation of

E x Iis the same as that induced from the triangulation of D x I. There-

fore we have defined a triangulation, call it (M x I), of the collar, which

agrees with M’ on the bottom of the collar. Consequently we can define
M+=MxIYUM.

It follows from [8, Th. 40] that M+ is homeomorphic to M. We can in
fact say more: let p: M+ — M be the retraction that shrinks the collar,
i.e., lex I is the projection onto the first factor, and 0| M is the
identity. In particular o maps the boundary M+ of M* homeomorphic-
ally onto the boundary M of M, and isomorphically onto M’'. We can
choose the homeomorphism 4: M+ — M so as to agree with o on the
boundary and outside any given neighbourhood of the collar. In other
words % also maps M * isomorphically onto M’, and keeps fixed every point
of M outside the given neighbourhood of M. Our purpose is to do the
same for manifold-pairs.

If V = (M?, M is a manifold-pair, the collared pair V* is defined
to be the mapping cylinder of the inclusion Vc V, and triangulated by
the manifold-pair

V+ = (M**, M) .
As before let p: V+— V be the retraction that shrinks the collar.

THEOREM 3. Let V be a manifold pair either of codimension = 3 or
locally unknotted on the boundary. T hen there exists a homeomorphism
h: V+— V that agrees with p on the boundary and outside a netghbour-
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hood of the collar.
Alternatively we can state the theorem in an equivalent form:

COROLLARY. Let j: M°C M?* be a proper embedding between bounded
manifolds. Suppose that either »p — q = 8, or that (M?, M?) is locally
unknotted on the boundary. Then there exists a commutative diagram

Mo T2
J(jMa)xl lj
. ko

M? x I — M?

where k?, k" are homeomorphisms nto, such that k*(x x 0) = x, x € M,
and k'(x x 0) = x, x € M.

It is easy to verify the equivalence, for given the theorem, the restrie-
tion of & to the collar provides the k’s of the corollary. Conversely, given

the corollary, then by stretching the collar twice as long, we obtain a mani-
fold pair homeomorphic to both V* and V.

REMARK. Theorem 38 fails if V is of codimension 2 and locally knotted
on the boundary. For, consider Example (ii) above, the suspension of a
knotted arc in a 3-ball. Here V is locally unknotted in the interior but
locally knotted on the boundary, whereas V* is the other way round.
Therefore V+ cannot be homeomorphic to V'

LEMMA 12. Let Q be an u_nlmotted ball-pair, a@ the cone-pair on Q,
and baQ the cone-pair on aQ. T hen there exists a homeomorphism

F1baQUaQ — aQ ,

that maps b to a, is the identity on Q, and maps bQ linearly onto aQ.

ProoF. For the standard ball-pair the proof is obvious. Anunknotting
homeomorphism from @ onto the standard ball-pair induces homeomor-
phisms from the given set-up onto the standard set-up, and the desired
homeomorphism is obtained by composition.

Proof of Theorem 3

We are given a manifold-pair V = (M?, M?). Let A,, 4,, -+, A, denote
the simplexes of M, arranged in order of, increasing dimension, and let
A, A, - -+, A, denote the simplexes of M? — M’, arranged likewise.
Let r; = dim A,. Foreach,1 < i < t, the first derived complex A/ of A,
is an 7;-ball in M*’, and A} x 0 is an isomorphic ball in M**. Let DI
be the dual cell to A; in M?, which isa (p — 7; — 1)-ball in M*". By our
definition of the triangulation of a collared manifold, the join
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B? = (A x 0)Dy—i™
is a p-ball contained in M?+, Let
My =M"U\U,_ B .
We have defined an ascending sequence of subcomplexes of M?*:
M = MrcMPC---CM? = M.

The last equality M? = M?* holds because every point of the collar is
contained in some simplex

TLX] © v 0 XX Ljpy 00 Dy

in the collar, where x,, - - - «, € M’, and this simplex is contained in the
ball B?, where A, is the simplex having barycentre ;.

Similarly for each 7,1 < ¢ < s, let D¢~"i~* be the dual cell to 4; in Mo,
and let Bf be the join

By = (4] x 0)Di™
which is a ¢-ball in M+, Let

My =M"UU;,_ B} .
We have an ascending sequence of subcomplexes of M?":

M = M{cM{c---cM} =M}, = --- =M/ = M"" .
Let
V., = (M}, MY), 1=1,2,---,1.
We shall show inductively that there exists a homeomorphism
hy: V,i—>V

that agrees with p on V. Since V, = V’, the first derived of V, the
induction begins trivially with %, being the identity map. The induction
ends at ¢ = t with the statement of the theorem.

To prove the inductive step, assume that &, ,: V;_,— V has been defined.
There are two cases, according as to whether or not A; € Mo,

Case (i). Suppose 1 < ¢ < s, so that 4;¢ M*. Let R denote the (p, q)-
ball-pair R = (B?, B!). Then

Vi == RU Vi—l .
Let a be the barycentre of A4;, and let @ denote the (p — 1, ¢ — 1)-ball-pair
Q = lk(a, Vi—l) = (lk(ay Mip—.l)y lk(a" Miq—l)) ’

which is unknotted because V,_, is homeomorphice to V by induction, and
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V is locally unknotted on the boundary by hypothesis. Then, since V,_,
already contains the ball-pairs corresponding to all the faces of A4,,

RN Vi, = aQ = (4] x 0) (D, Dg~riY)
and
R = a%Q .
By Lemma 12, there_z isa homeomorp}}ism aaQ UaQ — aQ that keeps @
fixed, and maps a°Q linearly onto aQ. Extend this by the identity on
V.-, — aQ to a homeomorphism
fi aoaQ U Vi-—l — V.
But a’aQU V.., = RU Vi1 = V;. Define h; to be the composite homeo-
morphism

hi—
v.. v, By
We have to check that ; agrees with p on V,. For points not in a°Q this
follows by induction, because V; — a’Q is kept fixed by f. For points in
a’Q we have a commutative diagram

@@ — 4

AN /
N, S hi-i=p
a(0Q)
Hence h; = h,_,f agrees with p on a’Q. .
Case (ii). Suppose s < © < t, so that A; ¢ M?. Then

Mp = Bg’UMﬁ—l ’ Mf = Mi({-l .

As before, let a be the barycentre of A;, and let B = lk(a, M?,). Then
B’NB?, = aB, and B! = a’aB. By Lemma 12 (ignoring the smaller ball
of the pair) there is a homeomorphism a’aBUaB — aB, keeping B fixed,
and mapping a’B linearly onto aB. Extend this by the identity on
M?, — aB to a homeomorphism

f: Mip i Mip_l .

Since a ¢ M¢,, MZ, is kept fixed under f. Hence f is a homeomorphism
Vi— Vi_,. Asin Case (i), define h; = h;_,f, and verify that %, agrees with
pon V.

There only remains to confirm the last remark in the statement of
Theorem 3, that & can be made to agree with p outside an arbitrary given
neighbourhood N of the collar. Let us subdivide the interior of V before we
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start, so that the simplicial neighbourhood of the collar in V'* is contained
in N. Then during the homeomorphism f of the inductive step, and hence
during each %;, no point outside N is moved. Hence & agrees with p
outside N. The proof of Theorem 3 is complete.

Manifold-flags

We conclude the paper by extending Theorems 1, 2 and 3 from pairs to
triples or more. Define a manifold-flag of length t to be a sequence of
manifolds

V:(Mpl,Mpz’...’M:ﬂ;), PL>Py > 200 > D, ,

such that each is a subcomplex properly embedded in its predecessor. If
P; — Dy = 7, then (M7, M*i+1) is called a pair of netghbours of codimen-
ston r. Each manifold may or may not be connected, and may be bounded
or closed, but if any manifold is closed, then all its successors must also
be closed in order that the embeddings be proper. Suppose that the first
s manifolds are bounded and the rest closed. The boundary

V - (Mm, Mm, ce, Ml’s)
is a flag of length s. As before, we define the collared flag V+ to be the
mapping cylinder of the inclusion V' V, and denote by p the retraction
©: V*— V that shrinks the collar. If all the manifolds are balls we have
a ball-flag, with boundary a sphere-flag. A ball-flag (or sphere-flag) is

unknotted if it is homeomorphic to a standard flag, defined by a sequence
of suspensions of a simplex (or its boundary).

COROLLARY 2 TO THEOREMS 1 AND 2. A ball- or sphere-flag is unknot-
ted if and only if each pair of neighbours of codimension 1 or 2 is un-
knotted.

ProoOF. The result for sphere-flags follows from that for ball-flags by
taking the boundaries of cone-flags. The proof for ball-flags is by indue-
tion on £, the length of the flag. By the hypothesis and Theorem 1, every
pair of neighbours is unknotted, and the corollary is true for¢ = 2. As-
sume the corollary for ¢t — 1, ¢ = 3. Suppose we are given a ball-flag of
length ¢,

(B?, -++, B, B") .

By induction there is a homeomorphism of the subflag of length ¢ — 1
onto an unknotted flag:

f: (pr ct Y Bq) —_)(Ep_rAry ttty Z(I—TAT) .
By |hypothesis the last pair of neighbours is also unknotted; therefore
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the image of this pair under f is unknotted, and so there is a homeo-
morphism

g: (Eq—rAr, fBr) — (zq—rAr, A'r) .

The composition of f followed by the (p — g)-fold suspension of g gives
the unknotting we want.

ADDENDUM TO THEOREM 3. Let V be a manifold-flag such that all
pairs of neighbours of codimension 1 or 2 are locally unknotted on the
boundary. Then there exists a homeomorphism h: V* — V that agrees
with p on the boundary and outside a neighbourhood of the collar.

We call this an addendum rather than a corollary to Theorem 3, because
the proof is a duplication of the proof of Theorem 3, using flags instead
of pairs, rather than a consequence of the statement of Theorem 3. We
leave the duplication to the reader.

GONVILLE AND CAIUS COLLEGE, CAMBRIDGE
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