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1. Sphere 2. Torus (or inner tube).

3. Knotted torus

4, Sphere with knotted hole
bored through it

5. Pretzel 6. Srhere with two handles
' : SewWn on. “



7.

8.

Knetted pretzel.

Sphere with two lLoles bored
through it, and one of the
holes threaded thvough

a hole in the other hole.

© 9,

Sphere with tliree handles sewn
on.



0. Klein boitles Notice that this surface, unlike the others,
intersects iteelf in the circle C. The Klein hot<ie can be formed

by taking a cylinder, narrowing one end, bending it round, poking

it through the side, widening it agsin, and sewing it onto the other

end, ‘
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that all the e xamp 1:3 above have thive poperties, whdch w
3

shall explain i S

(i)  connected
(1) closed
D) triangulable.
(i) Connected means that Thc surfd"‘ is all in on: piece. An
equivalent definition is that any two g;dir)'té of the surface can be

joined by a path in the surface. An example of a surface that is

not connect~d is a pair of tori (poo:, ly xinked).

(ii) Closed* means there is no boundary or rim. Examples of

surfaces ‘that are not closed are:

* This usage of the word "closed' is quite dif femm. fron the
sage "open and cloced set:s" that occurs at the beginning of

analytic topolopy hookse
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A Mobius strip is formed by takin

8 & strip and sewing the erds-

together the "wrong way". Hotice that a Mobius strip is one-sided

in the sense that an ant starting on one side

would find itself on the other side,

and crawling round it

(iii) Triangulable means that we can chop the surface up into g

finite number of vertices. ed s and faces. Of course if the
» B

surface is curved then the edges and fac

we can make a model in which they appear

28 also have to be curved, but

straight. “For example we

can triangulate the sphere with U vertices, 6 curved edges, and 4

curved triangles, so that the corresponding straight model is a




Mot a

There gre lots of ways to chop up a ophere and e covld as &

icn tiny twriangles if we wanted top  the mein thing is tho

mi.L - it
can be done in scme way, Sometimes 1t is easicr First to chop up

a surface into polygons rather than triangles. Toe example it

is easy to chop a torus into 9 vertices, 12 edges and 9 squares.

If we can chop a surface into polygons, then we ¢ also chop it

into triangles by putting an extra vertex into each polygcn:




We call a chepping np into triangles-a friangulaticn, and any
triangulation of the surfaces has ‘the two properties:

(1) Any edge is the edge of exactly two triangles.,

(2)  Any vertex, v, is the vertex of at least taree triangles,
and all the tfiangles*having'v‘aS‘vertex fit nound into

a cycie.

Our intuitioﬁ tells us-correctly that-any surface can be
triangulated, but the proof‘ofvthis'fact“requires considerable
analytic topolegy, well beyondvthe scope of this paper (see |
Reference 4), and so we shall be content tO‘assune.triangulabilityP
The great advantage of a friangulati¢n‘is that it reduces our
task of classificétion'to a'finitc combinatorial  problem, which e

can then tackle with finite mathematics.



Tucrefore from now on we shall asoure that 11 our swriaces
are

(i)  connected

(ii1) triangulable.

Definition of orientability.

We call a surface (vientable if it does not contain a MSbius

strip; we call it non-erientable if it does contain a MSbius strip.

[a)
-2y

Of the ten examples above the first nine are all orientab:
and only the lazt one, the Klein bottle, is non-orientabie. To.see
that the Klein bottle coﬁfaihs a Mdbius strip, imagine it to be
sliced into iwo by the plane‘of'the paper. In pafticular thg
self-intersection-circle C is slicéd into f@o semicircles. Now
slide the twovpieces apart, FEach piece will intersect itself in a
senucircle,:but QE'can remove these self-intersections by small
moves as follows. 'Lift the thin part of the bottom piece up above
the paper until it is clear of the rest; -gimilarly push the thin

part of the top piece devm below “the papéfw




It can be seen that each piece is a Mdbius strip., Therefore the
Klein bottle not 'c'mly_ contains a MSbius strip, but is in fact the

the union of two Mobius strips sewn topether along their boundaries.
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nession on‘_gggwsideu surfaces.

e b e

It is true that the Mobius strip is onemsided‘v Some writers
also call the Kleiﬁ bottle one-sided, and claim that it has "no
inside", but these statements are not true because of the
self-intersection circlch. An.ant cannot crawl fram one side to
the other because it would get held up at'C; nor can-it crawl from
the inside to ﬂ1e ,ou"tsvidev. If is a theorem that the Klein bottle
cannot: be constructed.ig 3-dimensions without self-intersections
énd so this difficulty is fundamental. Moreover the same diffiéulty
arises fur any closed non—ofientable surface. (The Mobius strip is
not closed.) O the other hand it is possible to construct a Klein

bottle in Y-dimensions without self-intersections: the way to do
th

this is to llft the tLlnner tube a 11tt1e way 1nto the H
and then the s;]F—lntn1 ectlon vanlthe At the same time the
concept of the Klein bottle having an "inside" becomes meaningless,
as the following analogy shows.

Consider a curve in 2-dimensions with one Selfmihtersection
point;, like a figure_s.' We can get rid of the self-intersection by

rd

lifting one brench a little way into the 3"~ dimension.

2 Jlmmsnons . -

dimension,
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When wa 1ift the fipgure 8 into the 377 dimension it is meaningleoss

(D

to ask what becomes of the inside of the figure 8, because curves in

3-dimensions cannot have "insides" or "outsides". In exactly the
same way surfaces in Y-dimensions cannot have insides or outsides,

and therefore when we get rid of the self-intersections of a Klein

bottle by lifting it into the yth dimension, then it is meaningless

to talk about it being cne-sided. Therefore a Klein bottle cannot

truthfully be said to bc cne-sided in either 3 or b-cdimensions.
Consequently we prefer the term "non-orientable" to the term
"one-sided". This ends the digressian’,

Definition of homeuvmorphism.

We now come to the central idea that distinguishes topology
from any other form of géonn‘rr*y. Two surfaces X and Y cre said to

be hemeomorphic if there is a one-to-one continuous function

betwecn them. We often write this as
Xy or XS,
We give some examples of homeomcrphisms.
Examglé (i) A spher*e is homeomorphic to an ellipsoid by radial

projection x + y.
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Lrample: (Gi)  More drastica 1ly, imagine the sphere X to be a
ruizber balleen, and bend into any uhapc 4 (w1thou.t cutting or

glueing). Then X & =Y, because each point of X is moved into a

unique point of Y, and thig determines a function X Y, which
is continuous (since there is no cutting) and one-tc-one (since ‘
there is no glue.ing). This e\ample 111usirates why topology is

soxr\atlmee called rubber sheet geometry ! ‘

Example (iii) A sphere is homeomorpm.c to the surface of a
tetrahedron, This example is important becav.e it illustrates
the fact that if we tr‘iangula.te a surface X with curved triangles
and make a model Y with straight triangles, then X is homeomorphic
to Y,

Example (iv) Suppose that during a deformation of a surface X
we made a cut, and later- sewed the cut up agaln exac tly as it was
before, then the result would be homeomorphic to X. The following

four plctures show, for example, that a knotted torus is homeomorphic

toanurﬂmo‘cted'tor'us. | o _ | >

1. Knotted ' 2. Cut (the arrows 3. Unknot 4, Sew up
torus show the : the again.
direction of cut) cylinder
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Digrennion on the joetied torus.
Theve is such a flavour of cheating about the last example

that it is worth taking time off to explain why. Let K denote the

knotted torus, let T dencte 1he unknotted torus, and let E der}o’ce

the 3-dimensional Euclidean space in which they are both embedded,’

We have two facts.

li

(1) There exists a homeomorphism K = T, and in Lxample (iv)

above we explai nﬂd how to construct such & homecmorphism.

(2) ‘There is no homecmorphism of E ontc itself throwing K onto
T. Ancthor way of saying this is that the knottedness of K is not
a property of K by itself, but of the way it is embedded in E.

In this paper we study just the surfaces by themselves, “and do

~not té;ck,le; the har'deriprrgblem Qf how many ways they can be knotted in

. E (a problem which is still unsolved). Consequently to have them

embedded in E is scmetimes confusing, and sonmetimes raiseé red
herrings like the knotting of tori, and the self-intersection and
cne-sidedness of the Klein bottle. We ought-really to think of

a surface as an abstract cbject existing on its own, without being.
embedded in'anything. However this abstraction is a difficult
concept for the beginner, 'and‘ onl;} becomes rigorous after familiarity

with the foundations cf analytic topology. Therefore we shall not

- insist upon it, and although the abstract concept will be implicit

in our proofs, we shall continue to base our intuition on surfaces .




“in E.

Prove that, of the ten examples at the beginning,

Example 2 = Example 3 £ Example 4

1!
I

Example § £ Example 6 = Example 7

Example S,

1M

Example 8

What classification mreans.

We classify surfaces by inventing a list of stendard surfaces
and proving that every surface is homeomorphic to wne of the
standard ones. A more sophisticated way of saying this ‘is that
homeomorphism is an equivalence relation on the set of all surfaceé,
and we list the equivalence classes. Like many results in topology
the classification theorem has a remarkable’ simplicity for the
following reason. Homeomorphic surfaces can be so drastically
different, that the equivélence classes are huge, and so there are
very few of .them, and the listis easy to compile,

Digression on the differencebetween topology and gpeometry.

By comparison Euclidean geometry is much more complicated,
because two surfaces are equivalent in Euclidean geometry if and
only if one can be moved in‘_cg- the other by'a rigid motion. Therefore
the number of &'ffereni’ surfaces, from the point of view of Euclidean
geometry, is so enormous that ﬁobody has even contemplated listing

them. In other words topolcgy can handle more  complicated situations
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than geometry, and yet with greater simplicity, because torology
‘highliphts the nmreidramatiC'pwoperfies of “the sitnation and forgots
the rosts  For example from the geometrical poirt of view a torus
.has an inner diamcter and an outer diameter; and nany other
measurements, but from the'topological point of view the most
dramatic property of the torus is its hole and the fact that it
persists in having a hole however mﬁch we bend it about.

In u-dimensions, and higher, the difference between‘geometry
and topology becomes even moré marked. Geometry bacomes almost
entirely algebraic in order to handle the complexity, while topology
becomes more geometric in order to handle the simplicity. Ry

"geametric" we mean that pictures are 1mportani,both for furnishing
the intuition to make conjectures, and for providing the inspiration
to discover the proofs. The pictures can be on blaékboards or in our
imaginations, but wherever they are, it is true to say that
topology is now the m@st geometric subject in mathematics.

The standard origntable surface of penus n.

To sew a handle on a sphere, punch two little holes in the
sphere take a cyllnder and sew the ends of the cyllnder onto

the boundar1es of the holes.




)

" been a Klein bottle).

-~ Sew them on to different parts of the sphere:,

- the standard orientable surface of ‘genus n  (n

The ‘arrows on “the boundaries ‘indicate which way to sew ™

together; hotice that the two arrows on the'éylindev'go the same
way, but that the two .ar'r’owS‘ ‘on the boundaries of the holes go
Opposite ways. A sphere with a handle sewn on is homeomorphic to
a torus (if we had got cne of the arrows reversed it would have

if we want to sew a number of handles oh we

Examples 6 and 9 at
the beginning show spheres with 2 and 3 handles sewn on. Define

2 0) to be a sphere

with n handles sewn on. In particular genus 0 means a sphere, l

genus 1 a torus, and genus 2 a pfctzel.
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The_stendard non-orienteble-surface-of penus n.

To sew a M8bius steip on a sphere, punch one little hole in
the sphere, take a Mobius strip and sew the boundary of ihe MSbius
strip onto the boundary of the hole. This sounds simple, and from

the abstract point of view it is as simple as it sounds, but if we

want to visualise it happening in 3-dimensions then it is not
obvicus, because the resulting surface has to interscct itself. In
a moment we shall give an alternative description thet is easier to

visualise, Meanwhile define the standard non-orientable surface of

genus n (n> 1) to be a sphere with n Mdbius strips sewn on.

Examples.
| (i) The case n = 0 is omilled because this would give a
sphera, whic.h is orientable.
(ii) The case n = 1 gives a surface called the real
pro’ective piane, which is described further in

Appendix 2.
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(iiil) The case n = 2 gives the Klein boltie because sewing
two MLius strips on a sphere is homeororphic to
sewing two Mobius strips-topcther, as the follewing

pictures show.

AR
OWIC

1. Sphere with two 2. Shrink the sphere 3. Sew the cylinder
Mobius strips = part into a little - onto one of the
SEWI1 One | cylinder, Mobius strips.

Alternative descriptions of sewing on Mobius strips.,

We shall show that the- follcwing three processes are

| equivalent.

(1) Sew a Mobius stiﬂip‘on a sphere.,
(2)  Punch a hole in the sphere and then sew together all pairs
of diametrically opposite points on the boundary of the

hole. We abbreviate this by saying "sew diametrically",




o’ s e 'S amalef ety

(3) Punch a hele in the sphere and then sew cil'a cruss-cap,
where a cross-cap is the surface illustrated in the

following picture.




The cross--cap has a boundary, and intersects itself in the line wy.
P ’ . : -

The horizental crosg-cecticons arc drawn in to indicate how it

intersects itself. We shall show that a cross-cap-is the same as

a Mobius strip wiin self-intersections. " - o ,

To see that (1) is equivalent to (2) céﬂsi‘der the following
sequence of pictures. Starting with (1), éut the Mobius strip along
its centre line, and it is a well-known party trick 'th::f it does not
fall apart, but becomes a twisted cylinder, which is homeomorphic to
an untwisted cylinder, Sew the base of thé cylinder onto the sphere,
and there remains to sew up the top again dianetrically, which is

homeomorphic to prescription (2).

1. Mobius stri P 2, Draw in centre line. 3. Cut along centre
: line.

4, Cut across., - ' 5. Untwist. 6. Sew up the last
cut,



7. Sew onto the sphere.

To see that (2} is equivalent to (3) consider thz following
q . 2

sequence of pictuwres. Sew the top of the cylinder diametrically
to form a cross-cap, by first pinching the ends of one diameter x,
then the ends of another diameter y, then sewing tcgether one pair

of arcs xy, and finally the other pair of aves yx.

20 Pillc]'! X s '31 I"old U.po
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4, Pinch vy, 5. Sew up xy. 6. Finally sew up yx

to form cross-cap.

We conclude by deducing that the standard non-orientable sﬁrface of
BENUS N cross-caps on a sphere, This is easier to visualise than
scwing on Mobius strips, but is aesthetically less pleasing from the
abstract point of Qiew,>becausebof the self-intersections.
vle are now in a position to state the main theorem, The

~ statement will résemblé a watershed dividihg the first half of the
paper from the second, because up till no& we have been develéping

- “topological intuition so that the reader can fully understand the

, meaning of the theorenm, whereas from now on we shall be ceneentrating

- on technique in order to prove the theorem.

- Classification Thecrem. Any connected closed trianpulable suiTace

~ is_homeomorphic to. one of the standard ones.
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Before proving the theorem we need sone definitions end lemmse

(a lenma is a little subsidiary thecrem).

Jet M be a curface. Choose a triangulation of M. By a
curve on M we mean a closed path without self-intersections,
consisting of vertices and edges of the triangulation. The reason
that we use the word "curve' for scrething that scuids wore like a
polygon is that it conjures up the ccrrect intuition. Whenever we

talk about a curve on a surface, it is easier to think of it

without the trisnpulation. Here are lwo examples of curves on a torms,

A curve is said to separate M if cutting along the curve causes

M to fall into two pieces. We call M spherelike if every curve

(in every triangulation) separates M.




Esaimole (i), The sphere is spherelike - this dis the famous Jordan
Exaiple (1), : I

Curve Theorem, which we shall prove in Lemma 2. It is also the
Justification for using the word spherelike.

Exomple (ii). The torus is not spherelike, because neither of the

,tWC curves shown above separate it.

Dafini Hon of *chn Lulﬂr Chcxr'actemoi ic

et M be a bupface. Chouse a 1.1‘.L£11‘1l’u1dt101) of M. Let v be
the nurber of ver'tices, the nurrber' of edpes and t the number of

Vtriangles. The Euler ch-racteristic XM) is defined by the for'mula

X(M) zv-ett.
The n,markablc fact aboutx (M) is ’chat it is 1ndf>p(=ndent of the
triangulation, olthf\ug;'\ of coumc v, € and t depend upcn \.Lu.
tmangulat: on. . The re-.ult for' sphere., was flrst publlsheu bv Euler

' in 1752 although was probably k.ncm to A; chimedes in the seccnd

century B.C. " The result for' other' surfaces was dlscover'ed by Poincaré

in the 1890's, and out of this small germ grew the whole of
albear'alc ’copolopy. The flrst mgorous proof. of the" invariance of
X(M) was - not unul the ¢930's, and is beyond the scope of 'thJ.S paper
(see Appendlx 1). The formula works not on.y for tmmgulatlon with

‘cmangle.,, but also for "tmangulatlons" w1th polygonal faces. -
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Examples

1. Tetrahedron.

X = 4 vertices. - 6 edges + U iriangles = 2.

1
H
.
|
s
.
’
.
v

2, Cube,
X = 8 vertices = 12 edges + “squares = 7. .
3. Torus

Xz 8 vertices - 18 edges + 9 squares = 0
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By tciangulaling su.itaﬁly show that
1. kﬁéylinder) R AR

2 X(Mobius strip) = 0.

3. X(sphere with n holes punched 'in it) = 2 - n,
Deduce that |

4, X(standard orientable surface of genus n) = 2 - 2n.

5, Xstandard non-orientable surface of genus n) = 2 - n,

We now state two leﬁmés. The programme will be first to prove
the thecrem using the lemnas, and then to prove the lemmas (with the
help of further lemmas). The reason for doing it this way round is

to give motivation for the lemmas.

lemna 1. Lf M is a connected closed trianpulable surface then

XS 2,

lemma 2. If Mis a connected cloced triangulable surface then the

following three conditions are equivalent:

(a) M is spherelike

(b) X(

N

= 2

(c) M is homeomorphic to'a 'spnerc.

Proof of the Theorem,

Let M be a given connected closed triangulable surface. We have

to prove that M is hameomorphic to ocne of the standard ones.




Choose @ Lelanpulation of M, and conpute X (M), Vhen K (M) 2. by
Lema 1o ITX (M) = .2 tﬁeﬁ M is homeomorphic to a sphere by Ltfnma 2.
Therefore assume xM) < 2. ‘Theref.ore M is not epherelike by Lemma 2,
and so.we can choose a curve C not sebamting M.

Consider a thin strip of surface containing C. There are two

possibilities: the strip is either a cylinder or a Mdébius strip.

If it is a cylinder we call C an orientation-preserving curve on

M, and if it is a Mdbius strip we call C orientation-reversing. We

now consfmct a new éur‘fa?;e Ml‘ by a process called surgerv, which is
defined as foll_ows., If C is ofientat‘ion-—presewing, cut along C and
fill in each side with a disk. It is important to leave the arrows

on the boundaries of the disks in order to remind Qs: which way to

sew them up again later on.




If C is 0rientation~reversing, again cut along C, but this time only
one boundary curve is formed instead of two, so fill thic in with
one disk instead of two., If the surgery is performed on an abstract
surface there is no difficulty about self-intersections, but if the
surgery -is performed in 3-dimensions then new self-intersections may
arise. We claim that

)&Ml) = [xM) + 2, if C is orientation-preserving N

x(M) + 1, if C is 'orientation-rever'sing.

To preve this suppose thét C contains k vertices and k edges. Then
x(C) .=k =k = 0. Therefore removing C does not alter x(M). In the
ovj.ehtation-prveserving case we form M. by adding two disks, where each

1
disk is obtained by joining C to a point.
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. Therefore each disk ccmtalns (k+1) vertices, 2k edges and k triangles..
Therefore x(disk) = 1 and x(Ml) = x(M) + 2x(disk) = x(M) + 2,

In the orientation-reversing case only one disk is added; although
this disk contains 2k triangles it still has characteristic 1, and so
x(Ml) = x(M) + 1. In both cases x(M) < x(Mi).

We now proceed inductively. Either x(Ml) = 2 and My is
homeomorphic to a sphere, or else x(Ml) < 2 and we can surger M1
into M, where x(Ml) < X(Mé)- By Lemma 1 the process must stop after
a finite number of steps, and so we cbtain a finite sequence of

surfaces M, Ml’ M2, Gy I*‘gu 1 that
x(M) <'x(Ml) < x042) % vk % x(Mf) = 2, with M, homeomorphic to a
- sphere by lemma 2. As an exercise the reader is recommended to

draw the pictures for the examples at the beginning of the paper.
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Nowr Mr contains a nuwber of little disks arising fm:u- the
surgeries, -and we can ensure that all ‘these diske are ch'_sjoin"t‘by
the follcming trick. The cnly way in which two disks might not be
di sjoint}lould be if the curve of a later surgery cut across the disk
of @an earlier surgery. The trick is {o shrink each disk into the
interior of one of its n~iangles, because this will ensure that it

autcmatically misses any later curves.

The triangulation has served its purpose, and we ncw forget ity

we concentrate oniy cn the disks in M, Imagining M,, to be made

- of rubber, we can move together each pair of disks that arose from

an orientation-preserving surpery. More precisely, we can choose
the homeomorphism from Mr to the sphere, so as to bring each pair
close together.

We then desurger, as follows. There are three types of

desurgery,



ez (4 ITwo digks with arrows poing opposite ways. Remove the
dicls; push up Jittle tubes and sew together: the effect is to

sew a handle on the sphere.

Type (ii) One disk. Remove the disk and sew the boundary
diametrically: the effect is to sew on a Mbius strip.

Type (iii) Twoe disks with arrows going the same~way. Remove the
disks, push one'tubeAup and one tube down, bend round and sew together,

The effect is to sew on a Klein bottle, which is equivalent to

sewing on two MSbius strips.




Performing all the desurgeries simult: 1eously we obtain a surface
My bomeomorphic to the cripinal M.

The_orientable case,

1f M is orientable so is M,. Thereforc M, contains no

Mébius strips, and so only desurgeries of type (i) can occur,

Therefore M, is a standard orientable surface, namely a sphere with

n handles sewn on., The g=nus, n, is the number of surgeries (or
desurgeries) and therefore can be computed from the Tuler
characteristic |

n=1 - k.

The non-orientable case .

If M is non-orientable then all three fypes of desurgery can
oczur.  If only type (i) cccurs, then M will be orientsble, which
is a contnadlctlon, and therefore at least some of types (ii) and
(111) must occur. Perform these first., We now use a trick to
convert all type (i) desurgeries into type (iii), as foliows.

Given a pair of disks ~corresponding to a type (i) desurgery,
transport (i.e. pull along rubber-wise) one of the disks round the
sphere to one of the M3bius strips that has already heen sewn on,
round the MGbius strip, and badc Like the ant, whlch found
J.tself on the other side after crawling round a Moblus strip, so the
arrow on the disk will be gomg the other way round after its |
transportation. In other words the type (i) will be converted into
iype (iii). Therefore M, is a'standard nen-orientable surface,

namely a sphere with n Mdbius strips sewn on, The genus, n, is the



nunber of type (ii) desurgeries plus tuice the rurher of typé Giii), -
and therefore can be ccmputéd

l ns=2 .. M.
‘This completes the proof of  the Theorem,
Graphs.

In order to prove Lemmas 1 end 2 it is necessary to introduce

graphs. A graph is a connected set of vertices and edges., 'Ccnnected'
means that.it is all in one piece, or equivalently that any two

vertices are connected by a path in the graph.

Example 1. o Lxample 2.

There are two possibilities: a graph may or may not contain loobs.

Example 1 contains loops, but Example 2 does rot. A graph that

contains no loops is called a tree.




lLemma 3., A tree always contains at leas one end vertoeyx (i.e

a vertex on cnly one edge),

Proof. Suppose not, SUppose that every vertex lies on two or nore

: edges.. Then, stafting at any vertex, it is possible to proceed ?

along a path in the graph, such that each edge is followed by a

dlfferent edge. If we continue for more steps than there are

vertices, then we must have performed a loqp, whichv is a contradiction,

Therefore the lemma is true, : |
If Gis a graph with v vertices and e edges, then the VEuler

characteristic x(8) = v - e.

Lemma 4, If T is a tree then X(T) =

Prcof. The proof is by induction on the number e of edges in T,
The induction begins with e = 0, for then T is a point and so
XXT) =1-0=1, Supmse the lemma true for e - 1, and Suppose we
are given a tree T with e edges. By Lemma 3 choose an end vertex,
Removing that vertex and the edgp contalm_ng it will not alter
x(T), and will leave a tree, T, say, withe -1 edges. Therefbre
x(T) = x(T ) =1, by induction. |

" lemma 5. If G is a graph contamnp a loop then )!(G) < 1,

Proof. Since G contains « a loop, We can remove one edge from that loop
without dlsconnectlng G, and ther'e.fone obtain a graph, Gl say, such
” that x(G) = x(G ) -1, Either Gl is a tree, or else we can remove
another edge to form a praph G We can go on removing edges until o
e hit a tree, and we must hit a tree after a finite number' of steps

because e is flnlte. Suppose, therefore, that Gr is a tree, r=> 1,
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x(C) = >;(GP) -1
= 1 =r, by Lemna 4
4

Dual--trianculations.

Let M be a cofmc—':c;'ted closed triangulable surface. Choose a
triangulation of M. The dual-trianpulation is defined as follows.
It is shown dotted im the picture,

Within each triengle X choose an interior point X, and call it the
dual-vertex of X, If two triangles X, Y have an edge E in common,
join their dual-vertices x, y tc form a dual-edge xy. The dual-
edge xy intersects E once, and deoes not meet any other edges.



Any tree conz sisting oF duel-vertices and dual. -edpes is called a
dual-tree, Th(' complement K of a dual—tree T is defined to be the
set of all verrtlces, edges and triangles of M +hat do not meet T,

lemma 6,  The compiement K of a dual-tree T is connacted,

Proof.  Since K contains all the vertices of M, it is enough to
prove that any two vertices of M can be connected by a path aleng
the edges of K. The proof is by induction on n, the number of
edges in T, The inductién begins with n = 0, for then T consists of
one dual-vertex, s; K céntains all the edges of M, and therefore K
is connected becauce M i‘s connected. Now assume the result true
forn « 1. Given a dua]~trec T wlth n edgeb, choose an end
dual-vertex X by Lenma 3, and let Xy be the dual-edge of T
containing x. Let X, Y be the triangles with dual-vertices x, vy

and let the vertices of X be Ay b, ¢ as shovm,



T

I.ét T1 be the dual-tree obtained from T by removing x and xy, and

let Kl be tﬁe complement of TI' Then Kl is connected by induction. :
But K is obtained fram Kl by removing the Vtrjiang'le X and the edge
ab. This does not disconnect Kl because any path in K, containing
the edge ab can be replaced by a path in K containing edges ac and
cb. Therefore K is connected. |

Lemua 7. A maximal dval-tree Vcon’cains all the dual-vertices.

Proof. LetT be a maximal dual-tree s that is to say T is not

contained in any larger dﬁal—tme. Suppose’ that T does not contain

the dual-vertex x. Then we shall prove a céntrac_iiction. |
For, let P be a path from x to any point of T. By shifting

P slightly we can make sure that it does not go through any

vertices,
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let p be the fir*st po:'mt on. the path P that lies in a triangle Y,
whose dual-vertex y ]_ie‘s m T. Since p is the first such point,

it must lie on some edgé of ¥ (and not at a vertex by construction).
Let Z be the other triangle containing this edge. Then the dual-
‘.'ex'te# z of Z does not lie in T (otherwise p would not have been
the first such point). Let T, be the dual-tree ohtained by adding
yz and z to T, 'Iheréfore T, is larger thar T and so T is not
maximal, and the contradiction proves Lemma 7.

Proof of Lemma 1.

Let M be a connected closed tﬁiangulable surface, and chocse

a triangulation of M. Let T be a maximal duzl-tree, and let G be the




crun;:lsz‘.'z?ht of T« Then T contains all .t?'ze d\Jal--QertJ‘.ees by Lemma 7,
and so G contains no tidangles. Therefors G censists of vertices and
edges, and is connected by Lemma 6. Therefore G is a graph. There
are one-to-one com'espondencés 'be'tweéﬁ

vértices of M e—— vertices of G

edges of M ¢&————yedges of T and G

tf'iangles of M(—-;-~> vertices of T.

Therefore x(M) = x(T) + x(G)

[}

1+ x(G), by Lemma U

A

2, by Lama 5,

Proof of Lemma 2.

We have to show that the following threé statements are
equivalent: (1) M _isépherelﬂce
(2) xM) =2
(3) Mis hm\eanorphic to a sphere.

We shall prove that (1) == (2) == (3) ==(1). First we prove

_that (1) implies (2). Therefore assume M is spherelike, and

suppose x (M) # 2, and we shall prove a contradiction. Let T be’.‘

a maximal dual-tree and let G be its complementary graph. Then
x(@) = (D) -y (T) = (M) = 1 £ 1, |

Therefore G is not a tree, and consequently contains a loop C.
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Tis loop is & curve® cn M, and therefore separafeé M inte two

picces, beczuse M is sp}'iel"elike. Lach piece of M coniajns at least

cne triangle, and therefore at least one dual-vertex. But all

dual-vertices are :ontaﬁ)ed in T by Lemma 7, and any two can be

connected by a path in T because T is a tree, and a tree is

connected. This path does not meet G, the complement of T, and

therefore does not mect the curve C, In other words peints in the

two pieces of M can be joined by a path not meeting C, Therefore

C dees not separate M after all, which is a contradiction. This

completes the prbof that (1) implies (2),

We now prove that (2)Vimplies (3). Therefore assune that

Cx(M) = 2, We have to show, that M is hcmecmorphic to a sphere,

et T be a maximal dual-tree, and let.G be the complemantary graph,

Then G is alsc a tree by Lemma 5, because x(G) = x(M) - x(T) = 1,

ok The reader may ask why we use fwo different words "loop" and
"eurve" for apparently the same thing. The reason is that each
gives the correct intuition of its context: a loop in a graph is
"like a loop in an electronic network, while a curve is something

" that one draws on a gsurface,



Let N(T) b2 a neighbourhocod of T formed by 'tlii'.:kening T. We claim
that N{T) is homeamorphic to a di sk, and the preof is as follows,

By applying Lemna 3 inductively shrink T to a point by retracting
edge after edpe. Starting from the point we can reverse the process
by expanding ont edge after edgé. Now put a li'tﬂe disk amundl
the point, and every time an edge expands ou‘r_. grow out an arm
amoeba-like to contain ihisrnedge. At the end the disk has grown

homeomorphically into N(T).,

Similafly a heighbourhcod N(G) of the tree G is homecmorphic
to a diék. The idea is *to choose N(T) and N(G) so that their union
‘is the whole surface M, and their intémecfion is the boundary of
each. This can be done as follows., First make a model of the
surface in which the edges are straight, the fzﬁangles are flat,
and the intersections of triangles and duél—edges are stmi.ghf.
Given a poinf x in the model, let X denote the triangle containing

x (or one of the triangles containing x, if x happens to lie on an



edze), and let t(x), g(x) denote the distances from

xtoTNn X, CnX
respectively. DPut x into N(T) if‘,t(x) S g(x), and into N(G) if ®
g(x) < t(x). The intersection N(T) N N(G) consists of points

such that t(x) = g(x), and is the boundary of both. The intersections

a?

of N{(T) and N(G) with typical triengles are shown below.

™ Consequently M = N{T) U N(G) is homeamorphic ta two disks scwn
along their boundaries, namely a sphere. This completes the proof
that (2) implies (3).

Finally we prove that (3) implies (1), that a sphere is
spherelike, In other words we have to show that any curve C on
a sphere separates the spﬁere. This is a polygcnal form of the
celebrated Jordan Curve Theorem. Assume that C is a polygon

consisting of a finite number of great-circle arcs.



Choose a point % on the sphere, not on C, nor on any of the
great-circles containing arcs of C, Regard x as the north pole.
Given ény other point_&, not‘én.C, nor at the south pole, deiine y
to be even or odd according as to whether the number of intersecticns

of C with the meridional arc xy is even or cdd. We have a conventicn

that an intersection like

‘.
MXTTYTY)
o

counts as 0 or 2. With this convention we deduce that all points
near an even point are even, and all points near an odd point are

odd. Therefore along any path not crossing C the parity remains



constant. In other words no even point can be joined to an odd
point without crbssing Cy-and-so C separates the spheie into
evens and odds. The poles give no frouble because x is even, and
if the south pole is not on C it has unambiguous parity. This
completes fhe proof of Lemma 2, and hence also completeé the proof of
the Classification Theorem,

We conclude the paper with four appendices.

1. Fbr theAexperfs;

2. The real projéctive plane,

3. Why non-o“ientabie surfaces have to have seli-intersections.

‘4. Some problems on knots.

Appendix 1. For the experts.

The discerning reader will have observed that we managed to get
through the paper without_ever defining a surface. And deliberately
So. For the topologist, the correct definition is as follows: a
surface is a 2-dimensicnél locally-Euclidean compact connected
Hausdorff space. .The:advantagés_of this definition are that it is
intrinsie, it is in topological terms, and it generalises imnediately
to higher dimensions. But we did not introduce it at the beplining
because it is too technical: it cannot be understood without
reading a book on.analytic topology (fqr example Reference 5), We
 wanted to present geometry to the beginner, nd it is toughAgoing for
the beginner to have to first plough through the foundations of

analytic topology.

-t




The second reason for omitting the definiticn was to avoid the
problem of triangulability. The only correct published proof that a

surface can be triangulated is Reference 6, which is much tco hard for

the beginner. In assuning triangulability we implicitly defined a

sﬁrfa,ce to be a collection of triangles fitting together according
to the rules (i) each edge lies cn two triangles, and (ii) each
vertex is joined to a polygoh. With this ;*'melici’t definitionv our
proots were rigorous. However it would perhaps have been a little
unaesthetic tc meke this into an explicit definition, because it
sounds rather :.tifisial. And indeed we should have been in danger |
of confusing the conce;ﬁt with the tool. The concept of surface is
one of man's richest intuitions, whereas a triangulation is -a mere
mamhen‘at"xcal tool. Therefore our taste was to present the ideas of
"intuition and tool" aind avoid any "definition" that was too
technical or artificial., |

The other major omission was the proof of the topological
invariance of x. Invariance is necessary in order tc prove that two o
surfaces of different genefa are not homeomorphic. The preof is hard B
and requires the full power of algebraic topclogy (see for example
Reference 4). One expxesseé X in terms of hamology groups, and then
proves the hémoloéy groups S e topological invariants. |

It is true in Lemma 2 we proved that x(sphere) = 2, but




the roesult depended upon ocur proof of the Jordan Curwve Theorem,
sphere =====) sphereclike
which was only for triangulations made up of great-circle arcs, To
get a lopologically invariant proof the triangulation must be
allowed to be arbitrarily wiggly. The proof that we gave breaks
down because an arbitrary curve may meet a meridian in an infinite.
nurber of points, Ve remark, however, that this part of our pfoof
was not really necessary, and only put in for good measure. The

careful reader will have noticed that the cnly parts of Lemma 2 that

were used in the prcof of the classification theorem were the other

two parts:
spherelike===x = 2 ===)sphere.

We conclude the appendix with some remarks abcut current
research., We claimed at the beginning that the classification
thecrem was a beautiful example of geometric topology, and this is
because it has strong overtones of higher dimensions. The
definition of an n-manifold is an n-dimensional locally~Euclidean
compact connected Hausdorff space. In other words a surface is the
same 2z a 2-manifold (this was why we used the letter M to derote
a surface)., The classification of 2-manifolds (surfaces) was
achieved in the last Cen‘cﬁrj, and for the whole of this century
topdlogists have been struggling in vain thclassify 3-manifolds.
The main stumbling biock is the ce-lebrated Poincaré Conjecture,
which is the' 3-dimensional analogue of o

spherelike —=======) =phere.
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Poincaré conjectured this 1n 1899, but it is still unsolved ’today.

In spite of this, the analogous Poincaré Conjecture in dimersions® 5
was solved in 1961 by Smale and others. During the last five years
therce have been spectaculér successes in high d:iuwensional geometric
topology, which have given us new insight into the low dimensions.

The new proof of the classification theorem that we have given above

is an example of this insight,

Appendix -2. The real projective plane.

We begin by emphasising the word "real, because often it is
not clear whether a writer is discussing real projective geometry or
compiex.projective geometry. There are three definitions of the real
projective plane, P, |

(1) P is the set of lines through the origin 1n Euclidean
3-dimensions..

(2) The projective plané. is wU = where m is the Euclidean
plane, and = the set of "points at infinity".

(3) The sfanda:ﬁ non-orientable surface of genus 1, namely
a disk and a Mdbius strip sewn together.

We shall show that all three definitions are equivalent. From
the gcdne‘tr'ical point of view rdefinition (1) is the most eleganf,
because it also contains the Iinear structure of P. Definition (2)
is aestheticdally bad because finite points are different from infinife
points, whereas all pcints P are qualitativelyAthe same, Definition

(3) is the topologists viewpoint. o

&
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To show (1) implies (2), let m be a plane in 3-dimensions not
through the origin. Then _'each line through the origin meets i in a
unique point, or else is parallel to =, in which case we say that
it meets = in a "point at infinity". Therafore there is a
one-to-one correspondence P é——iy U M e

To show (1) is equivaleh't to (3), let S be the unit s'phere
centre the origin. FEach lihe through the origin meets S in a pair
of antipodes. Therefore there is a one-to-one correspondence

points of P¢«—— pairs of antipodes of ‘8.
Therefere to recover P, sew S together antipodally. First sew the
northern hemisphere onto the southern hemisphere, and then sew the
equater diamctrically. ‘I'his_ is equivalemt to sewing a I‘1'c‘>biﬁs strip
on a sphere. |

Appendix 3. Why non-orientable surfaces have to have

self-intersections.

Theorem. Any closed connected surface in 3-dimensicns has an

.inside and an outside.

Proof. 'The proof is a:{a.logous to that of the Jordan Curve Theorem.
Let M be the given surface in 3-dimensions. Choose a point x well
away from M, Given any other point y not on M, call y even or odd
according as to whether the number of intersections of xy with M is

even or odd. Define x to be even., Then the even points form the




cuteide, and the odd points the inside, and there is no path from an
| ;

inside point to an outside point without crossing M.

Cevgllary.  Any clesed non-corientsble surface in 3-dimensions must

have self-intersecticns.

Proof.,  Suppose not. Suppose we have M without self-intersections.
Without loss of generality we_Can.assume M is comnected. By the
thecrem M has an inside and an outside, and since ! is non-
orientable it contains a M&bius strip., If we start an ant on the
inside, and let it crawl round the Mébius strip, then it will finish

up on the outsile, and will have traced a path from inside to outside

without crossing M, which is a contradiction.

Apperdix 4. Some problems on knots.

The following problems are harder than they lock, but playing
with them may help the reader to sharpen his intuition. A general
'introduction to knot theory is Reference 3.

1. The torus in Example 3 at the beginning of the paper is
knotted on the outsicde because the outside is not homecmorphiEAto the
outside of an unknotted torus. Similarly the torus in Example 4 is
knotted on the inside. Prove that a torus cemnot be knotted en both
the inside and the outside at the same time, (see Reference 1).

2. Prove that any curve in Y-dimensions can be unknotted.

3. Prove that a sphere can be knotted in UY-dimencions

(see Reference 2).

4. Prove that any sphere in 5-dimensions can be unlmotted
(see Reference 7).

5. Prove that two spheres can be linked in 5-dimensicns.
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