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Gears from the Greeks.

E.C. Zeeman.

1. Introduction.

3 The Antikythera Mechanism is the oldest and most sophisticated
scientific instrument surviving from antiquity. It is a calendar computer
made in Rhodes about 87BC. It contains 32 bronze gears, including a
differential gear, and is accurate to 1 part in 40000. The Mechanism was
discovered in a sunken ship by sponge fishermen in 1900, and seemed at
first to be just a lump of calcified metal. It remained unexplained until
1972, when Derek de Solla Price [10] unravelled the mysteries of the
interior by using X-rays. As a result, historians of science have been

able to completely reassess the high technology of the ancient Greeks.

The ship was evidently travelling from Rhodes to Rome in about 70BC,
and sank in a storm off the small island of Anthykithera (see Figure 1) -

hence the name.
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Figure 1: Map of the Aegean Islands [Price,l0; Reproduced by permission of

the American Philosophical Society].

There it lay until discovered by the sponge fishermen. They recovered

a large hoard of bronze and marble statues, amphorae, pottery and coins,




which was sent to the National Archaeological Museum in Athens, along with
our uninteresting lump of calcified metal. After a while, however, the
lump dried out and split into six fragments revealing traces of gear wheels

(Figure 2) and graduated scales (Figure 3).

Figure 2: Fragment A showing gears (Price, 10; Photograph courtesy of

National Archaelogical Museum, Athens].
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Figure 3: Fragment Cl showing graduated scales (Price, 10; Photograph

courtesy of National Archaelogical Museum, Athens ].




FRONT BACK
ooon 59 LOOR

2
- 3
! : 9::;:3‘».
N
ng with
M
‘er, the
INSCRIPTION
wheels O . -
S
< . G
j PARAPEGMA
’3 NSCRIPTION
Tormmae s s s i
BOTTOM
FRONT RIGHT SIDE BaCK
L'L 2 3 . b 6 L] 9 10 21GITS
o e e -
Figure 4: Outer casing and dials (Price,l0; Reproduced by permission of
the American Philosophical Societyv].
Nobody understood what these meant until Price persuaded the physicist
Char. Karakalos to take some X-ray photographs of the insides of the
fragments (Figure 5). These revealed traces of the 32 gears, and after
considerable detective work Price and Karakalos reconstructed the amazing
of
gearing system shown in Figures 6 and 7.
h
S
Al
Figure 5: Radiographs of fragment A. 1In the enlargement on the right the
h
gear teeth have been marked in ink for tracing the gear trains (Price, 10;

Photograph courtesy of National Archaelogical Museum, Athens].




Figure 6: General plan

of the complete gearing system [Price,lO;
Reproduced by permission

of the American Philosophical Society].
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Figure 7: Sectional diagram of the complete gearing system (Price,l0;

Repreoduced by permission of the American Philosophical Society].




Meanwhile they conjectured that the outside probably looked 1like the

rectangular box shown in Figure 3, about 30cm high.

This life-size model that we have here tonight was kindly lent to us by
the Smithsonian Museum in Washington. Some of you may have already seen it
in the fascinating little exhibition on Early Gearing [3] mounted by Judith
Field and Michael Wright in the Science Museum this year. It is an
astonishing fact that of all the examples of precision gearing made before
AD1200 only two are known to have survived, probably because all the others
eventually got broken and were melted down again as valuable scrap metal.
One is the Anthikythera Mechanism and the other is a brass Byzantine
sundial-calendar made about 600 years later [4], which was acquired by the
Science Museum in 1983. We have here tonight a beautiful working model of
the latter reconstructed by Michael Wright. Although it is impressive, it
is not to be compared with the complexity and ingenuity of the Antikythera

Mechanism.

I am indebted to Richard Gregory [8] for first drawing my attention to
the Antikythera Mechanism. I have had a great deal of pleasure in finding
out how it worked, and would like to share some of its secrets with you
tonight. We must begin by asking how do we know that it was a calendar

computer?

2. The front face.

The first step in the detective story is given by the fragment in
Figure 3, from which we can reconstruct the front dial, shown on the left
in Figure 4. The inner scale is divided by 360° into the twelve signs of
the Zodiac. Here TAPONON corresponds to Virgo (running from 23 August to
22 September), and XYAAI corresponds to Libra (running from 23 September to
22 October). We conjecture that the motions of the sun and moon against
the background of fixed stars were represented by hands (or other
indicators) moving clockwise round the face. the sun hand going round once
a year, and the moon hand once a month. In other words we have two hands

on a single dial, one going about 12 times as fast as the other. It may be
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no accident that this bears a resemblance to the modern clockface., even

though the latter is measuring hours and minutes rather than years and

months, because there may have been a continuous tradition of precision

gearing from that day to this.

But why did the designer choose the hands to go clockwise rather than

anticlockwise? The answer is that against the background of fixed stars in

the Northern sky the sun and moon go clockwise round the circle of the
and so the front face of the Antikythera Mechanism is merely a
is why our clocks today go

Zodiac,
symbolic picture of the sky. And maybe this

clockwise.

Meanwhile the outer scale is divided into 365 days. comprising the 12

equal months (each of 30 days) of the Egyptian-Greek calendar together with

the 5 special epagomenal days necessary to complete the year. Of course it

actually takes the sun 365% days to go round the Zodiac.and so every leap

year the outer scale has to be moved back one notch to compensate. That is

why the outer scale slides on the inner scale. The Egyptian-Greek calendar
had already been running for several centuries so people were very familiar
with the convention of moving the calendar back a notch every leap year.

In fact Price suggests that the upper dial on the back face may have

indicated leap years for this purpose.

3. The sun-moon gear train.

What is the evidence for the sun and moon hands? For this we have to

look at the gear train

B2 - C1  C2 > D1 » D2 » B4 ,

shown in Figures 6,7, and 8, where a single arrow denotes "drives" and a

double arrow denotes "is fixed to". We can calculate the gear ratio of

this gear train from the numbers of teeth in the gearwheels shown in Figure

7, which Price and Karakalos [10] obtained from the radiographs (as in

Figure 5):




gear ratio = g4 X 18 X i _ 263 13.36842

38 24 32 19

sun

Figure 8: The sun-moon gear train.

Now the mean periods taken by the sun and moon to ¢o round the Zodiac are

called the sidereal year and month, and by modern measurements

sidereal year _ 365.25636...days - 13.36874. ..

sidereal month 27.32167...days

Therefore if this gear train does represent the relationship between the
sun and moon then it is accurate to | part in 40000, which is very strong

evidence in its favour.

Notice in Figure 8 that if B4 represents the moon going clockwise, then
B2 will represent the sun going paradoxically anticlockwise, in the wrong

direction. We shall discover the reason for this when we come to analyse
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the differential gear in Remark 2 of Section 6 below. Meanwhile in Figure
7 it can be seen that the designer has compensated for it by adding a
contrate gear A meshing with Bl1, that reverses the uirection, and drives a

sun wheel going clockwise in the right direction.

4. A digression on accuracy.

How did the Greeks manage to find so accurate an approximation to the
ratio of year to month? Not only is E%% very accurate, but it is in fact
the best possible approximation by any rational number* with denominator
less than 80. This level of accuracy corresponds to measuring the mean
length of the month to the nearest minute. But the Greeks had no
instruments that could measure time so precisely. Nor would it have been
possible to observe the position or the phases of moon with such precision,
to say nothing of having to take the average of several readings because of
the variations in the length of the month. And even if they had been able
to measure accurately they did not have real numbers or decimals with which
to express the results. nor any technique of division of real numbers with

which to calculate the ratio. So how on earth did they do it?

Here we are not talking about the designer of the Antikythera Mechanism
in the 1St century BC, but about the Greek and Persian astronomers in the
sth century BC, or possible the Babylonian astronomers much earlier. For
example Meton introduced a 19-year cycle, called the Metonic cycle [7,9],
in Athens in 431 BC, which is still used today for determining the date of

Easter. This cycle is based on the Metonic ratio:

19 sidereal years = 235 synodic months,

where the mean synodic month is the average period between two new moons
(or equivalently between two full moons). The synodic month is roughly
29.5 days, as opposed to the sidereal month which is roughly 27.3 days. We
need to prove a couple of lemmas to verify that the gear ratio used in the

Antikythera Mechanism is in fact equivalent to the Metonic ratio.

* A rational number is the ratio of two integers p
q
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Let S = sun, E = earth, M = moon. Let

a = angular velocity of M about E
b = angular velocity of S about E (equivalently [ about §)
¢ = relative angular velocity of M relative to the direction ES.

full moon

synodic month

sidereal
month

Figure 9: The sidereal month is the period between two positions where EM
points in the same direction, and the synodic month is the period between

two full moons.

Lemma 1. a-b=c¢c¢
Proof : by definition of relative velocity.
sidereal year sidereal year
L 2. =
L EMmE 2. sidereal month i synodic month
Proof : The sidereal month = %
, 1
sidereal year = 5

synodic month

I
O =
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sidereal year  a
sidereal month b

= b;c by Lemma 1
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sidereal year
synodic month

Substituting the Metonic ratio

sidereal year 235
sidereal month 19
we deduce
sidereal year . . 235 _ 254
sidereal month 19 19

which is the sun-moon gear ratio of the Antikythera Mechanism.

So the designer was merely using a well-known ratio. But the question
still remains: how did Meton or his Babylonian predecessors manage to find
SO0 accurate an approximation? I would like to give an algorithm to show
how it could have been done, and then prove a theorem to show why this

algorithm gives the correct answer.

5. The algorithm.

Imagine you are an early astronomer, wanting to know how many months
there are in a year. The simplest approach is just to count the number of
new moons per year. Of course you have to know when the yvear begins, and
one way to do this is to choose a particular bright star, and define "new
year" to be the first day of the year on which that star is visible at
sunset. You then record the sequence of new moons and new years, by

cutting notches on a stick, for example. or making marks on a wax tablet.

l
IIIIIIIIIIIIIII IIIIIIIIIIIII,III




12
You notice that there are sometimes 12 and sometimes 13 new moons in a
year, so you write down the sequence of numbers of new moons per year for
many years:

12,13,12,12,18,12,13,12,12,13,12,12,13,12,12,13,12,13, . ..

After some time you begin to notice a new pattern because there are always
2 or 3 steps from each 13 to the next. So your write down the sequence of
numbers of steps from each 13 to the next:

3,2,3,8,3,2,8,8,2,8,8,3,2,3,3,2,3,3,2,3,3.3,2,3, ...

You then notice there are always 1 or 2 steps from each 3 to the next, so

you write down that sequence

2,1,1,2,1,2,1,1,2,1,2,1,2,1,1,2, ...

Same thing again:

3,2,8,2,2:,3,...

And again:

2:3,.:.

This is as far as you can get if you (and your predecessors) had only

collected 65 years of data, because each sequence is shorter than the

previous one. Now pick out the smaller number in each sequence:

12,2,1,2,2

and assemble them into a continued fraction
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Note that there are other more ad hoc ways of obtaining the Metonic
ratio [e.g. 7] but this algorithm is a systematic way of obtaining best
possible approximations, within bounds that can also be calculated.
Moreover the procedure is typical of Greek mathematics, since it is closely
related to the Euclidean algorithm, or anthyphairesis [5,6]. In the

Appendix we prove a theorem to explain why the algorithm works.

6. The differential gear.

Let us now return to the Antikythera Mechanism and look at the back
plate (on the right of Figure 4). Price [10] suggests that the lower dial
registers the phases of the moon. Indeed one would expect the latter to be
an obligatory feature of any sophisticated calendar computer. We already
have gears in the sun-moon gear train rotating with the speeds a,b of the
moon and sun (see Section 3 above). What is needed to register the phases
of the moon is another gear rotating with the relative speed a-b.
Therefore the mechanical problem facing the designer was: given two gears
rotating with speeds a,b how to construct a third gear rotating with speed

a-b?

If all the axes of all the gear wheels are fixed then the solution is
impossible, for the motion of any gear in a gear train is completely
determined by that of its predecessor. In other words no gear can be
simultaneously driven by two other gears. Therefore to solve the problem
it is necessary to have some gears with moving axes. 1In other words it is
necessary to invent the differential gear. And this is the remarkable

innovation contained within the Antikythera Mechanism, made in 87BC.

Let us introduce the following terms. Any gear whose axis moves is
called a pinion. The gear carrying the axes of the pinions is called the

differential.
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Figure 10: The differential gear E3 carries the axes of the pinions J,K.

In Figures 6,7 and 10 the differential is E3 and the two pinions are J

and K. In

fact K consists of two gears K1 and K2 fixed together. In

Figure 7 it can be seen that the gears on the E-axis mesh with those on the

B-axis, whose speeds are already determined by the sun-moon gear train (see

Section 3 above). Therefore E2 rotates anticlockwise with the moon speed,
a, while E5 rotates clockwise with the sun speed, b.

Let

14
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d = speed anticlockwise of the differential E3
p = speed anliclockwise of the pinion K.
Lemma 3. a = p+d

b = p-d.

Proof . Fix d = 0.

Then a = p because E2 and K1 are the same size and both mesh with J.

Also b = p because E5 and K2 are the same size and mesh together.

If the differential E3 is now rotated with speed d then this is added to a,
and subtracted from b, proving the lemma.

Corollary. d = 3%9

Proof . Subtract the equations in Lemma 3.

In other words the differential is being driven anticlockwise at half the
speed that we want. Therefore if we were to mesh the differential with a
gear half its size, the latter would rotate clockwise at the desired speed
a-b. However there is one snag: we have been looking at everything from
the front, and we want to register the phases of the moon on the back dial,
and therefore we need a gear that rotates clockwise when seen from the
back, in other words anticlockwise when seen from the front. The designer
solved the problem by taking a two-step gear train off the differential
(which incidentally had the additional advantage of employing smaller gears

that could be more neatly packed into the box):

E3 - F1 = F2 > G2
with gear ratio

— x — = 2 , as desired.

Hence G provides the necessary gear for registering the phases of the moon

on the lower dial of the back plate.

Remark 1. The reason that the designer had to put the differential on a
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separate axis E, rather than on the main axis B. is topological. If he had
tried to take the sun and moon drives directly off B3 and B4 (rather than
indirectly via E1 and E2) then the pinions would have snarled the sun-moon

gear train.

Remark 2. We can now see why the designer made the sun and moon gears in
the original sun-moon gear train go paradoxically in opposite directions;
it was so that the differential could register the difference E%E rather

than the average 3%2

Remark 3. The differential in the back axle of a car contains exactly the
same principle (see Figure 11). Here the differential is driven by the
engine and runs at the average speed of the two back wheels, allowing them

to corner at different speeds.

to engine

)
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to left wheel &€— g E —>to right wheel
! =3
v
\\\\*pinion

differential

casing attached to differertial

Figure 11: The differential in the back axle of a car.
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The inventor of the modern differential gear was James Starley in 1877,
according to the engraving on his statue in Coventry. In fact, he is one

of a number of people who have rediscovered the principle since the

original Greek invention. But the way he discovered it is worth telling
[13]. He was an inventor of bicycles, amongst other things, and one day he
invented a quadricycle by bolting two bicycles together. He and his son

decided to test the new machine by cycling from Coventry to Birmingham for
tea. Their progress caused some amusement, and when they got to Blacklow
Hill Starley was reluctant to get off and push the machine up the hill, so
he said to his son "Wire it up, lad", meaning put on some speed. So his
son, who was a strapping lad, duly accelerated his side of the machine
causing the whole apparatus to swerve into the ditch and pitchfork them
both into a bed of nettles. Whereupon Starlev clambered out and sat on the
edge of the ditch lost in thought, until suddenly he cried "Eureka" for he
had discovered the differential gear. Except that he arranged to have it
the other way round: instead of one engine driving two wheels at different
speeds, he had two engines driving one back axle at different speeds. Thus
while his son was pedalling vigorously he himself was able to maintain a

more leisurely pace without fear of being thrown into the ditch again.

7. The crank handle.

Price did not c¢laim to have solved all the gearing of Antikythera
Mechanism. Indeed the main weakness of his reconstruction 1is the
suggestion that the whole machine be driven by a crank handle attached to
the contrate gear A (see Figure 7), for this involves a substantial step-up
mechanism. It is like trying to alter a clock by pushing the hour hand,
and expecting this to drive the minute hand twelve times as fast. I
mentioned this weakness in a lecture at Chelsea a couple of years ago and
it was picked up by Michael Wright, himself an experienced gear-maker. and
he confirms that the Smithsonian model does not work for this reason. He
passed the problem on to Allan Bromley, who has subsequently developed some
interesting modifications [1] of Price's reconstruction, by driving the
whole machine with a more realistic step-down mechanism from the other end,

via the differential. Eventually the crucial test will be to make a

working model .
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8. Conclusion.

I would like to conclude by telling a cautionarv tale. Let us try and
place the Antikythera Mechanism within the global context of ancient Greek
thought. Firstly came the astronomers observing the motions of the
heavenly bodies and collecting data. Secondly came the mathematicians
inventing mathematical notation to describe the motions and fit the data.
Thirdly came the technicians making mechanical models to simulate those
mathematical constructions, like the Antikythera Mechanism. Fourthly came
generations of students who learﬁed their astronomy from these machines.
Fifthly came scientists whose imagination had been so blinkered by
generations of such learning that they actually believed that this was how
the heavens worked. Sixthly came the authorities who insisted upon the
received dogma. And so the human race was fooled into accepting the

Ptolemaic system for a thousand years.

Today we are in danger of making the same mistake over computers. Our
present generation is able to view them with an appropriate skepticism when
necessary. But our children's children may be brought up within a society
so dominated by computers, that they may actually believe this is how our
brains work. We do not want the human race to be fooled again for another

thousand years.

9. Appendix.

Suppose that we are given two periodic events, A and B (such as new years

period A

and new moons). Suppose period A > iod B, and let x = ————
) pp P perio period B

Therefore x > 1. Assume that there are no coincidences*, in other words no

A coincides with any B.

* This is a reasonable assumption because if the sequence starts with an A
then the whole sequence is determined by the time interval before the next
B, and since there are uncountably many possible time intervals, of which
only countably many can lead to a concidence, almost all sequences will
have no coincidence.
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Let S be the sequence of numbers of B's between successive A's. We

call S an unfolding of x. Write

where n is the integer part of x, and r the remainder, 0 < r < 1.

Lemma 4 If x is an integer (in other words r = 0) then S is a sequence of

all n's.

Proof. Since period A is n times period B, there are exactly n B's between

any two consecutive A's.

Lemma 5. If x is not an integer (in other words r > 0) then S is a

sequence of n's and n+l1's.

Proof. Given any A let

time interval before the next B
period B

We call o the phase-lag.

Notice o # r, otherwise the next A would be a coincidence. Then there are

exactly n or n+l B's before the next A according as to whether ¢ > r or

o < r.
A A A
| | |
T I I I ]
B f B fB B B
o>r o<r
Definition. If x is not an integer (in other words r>0) we make the

following definitions.

el

The derived number x, of x is defined by x, =

The derived sequence S, of S is defined to be the sequence of numbers of

steps in S from each n+1 to the next.
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Lemma 6. S, is an unfolding of x,.
We postpone the proof of Lemma 6 for the moment.

If x, is not an integer,then by Lemmas 5 and 6 we can define the derived

X,,S, of x,,S,, and so on. We obtain a sequence of derived numbers
X,X1,X2,X3,..

and a sequence of derived sequences
S$,5,,5,,S5...

such that S; is an unfolding of xj, for each 1. There are two

possibilities depending upon whether x is rational or irrational.

(i) If x is rational then after a finite number of steps some xg is an

integer, and so we have to stop.

(ii)If x is irrational then no xx is an integer. and so we never have to

stop.
Let nj denote the integer part of xj, for each i.

Theorem. The continued fraction expansion of X is given by

If x is rational the continued fraction stops at ny, and if x is irrational

it never stops.

Remark. The advantage of the Theorem is that if we do not know x, but do

know S, then we can compute the derived sequences S,S,,S,,... and use

Lemma 6 to obtain n,n,,n,,..., and then use the Theorem to calculate x to

any desired accuracy by truncating the continued fraction appropriately.
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Proof of the Theorem.

By definition of derived number

X1

Xy = Dy + 1

i 1 Xz

Xz = n; + 1

2 2 x3

Therefore
1 1 . .
X =n + - T = n +'—__—_—7-___ = desired expansion.

Ny, * = n;, + ——m -
1 X4 ! 1
n 2 + -

If x is rational then xx = nk, and so the continued fraction stops at Nk .

Proof of Lemma 6.

Represent the A-events by vertical lines in the plane, spaced a unit
distance apart, and the B-events by horizontal lines, also spaced a unit
distance apart as illustrated in Figure 12. Taking period A as the unit of
time, we have to proceed with a constant velocity (1,x) in order to cross
the A-lines with period A and the B-lines with period B. In other words we
must proceed with constant speed along a straight line X with slope x. The
position of X is determined by the initial phase-lag between the first A
and the next B. Meanwhile X determines an unfolding S of x as follows. As
X crosses the vertical and horizontal lines we can read off the sequence of
events; for example in Figure 12 the line X determines the sequence of

events
ABBABABABBABR. . .

Hence the unfolding S of x is
2,1,1,2,...




X, slope = X

B 4
/ -dotted lines, slope = n
B D ~ .

Y, slope = x-n =71

slope -i—
p il

Figure 12: Example illustrating the proof of Lemma 6.

Here x = “/3, approximately.

22
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Draw in dotted lines of slope n through the intersections of the A-lines
with the B-lines and observe where they cross X. In fact there is exactly
one crossing in each A-interval containing n+1 B's, and none in the other
A-intervals, because the condition for X to cross a dotted line after an A
with phase-lag o is o<r, which is exactly the same as the condition for n+1

B's.

Now apply a sheer map to the plane that leaves the A-lines vertical and
makes the dotted lines horizontal (see Figure 12). This has the effect of
reducing the slope of all lines by n. 1In particular the image Y of X has
slope x-n = r. Now reflect the plane in the diagonal so that the A-lines
become horizontal, and the dotted lines vertical. Then the image Xy of Y
has slope % = X,

Consider the derived sequence S; of S.
Each term of S;= number of steps of S between two n+1's

number of A-lines between two X-crossings of dotted lines

number of A-lines between two Y-crossings of dotted lines

number of horizontal lines between two X,-crossings

]

of dotted lines

1

a term in the unfolding of x, determined by X,

Hence S, = the unfolding of x, determined by X,.
This completes the proof of Lemma 6 and the Theorem.

Remark 1. The Theorem is subtle because it gives metric information from
order information, which 1is wunusual. Moreover it is wvaluable for
applications because order information is easy to observe (like recording
the sequence of new years and new moons) whereas metric information is
difficult to observe (like the difficulty of measuring the mean year and
month correct to 1 part in 40000). Thus the algorithm enables us to bypass

the difficulty.

Remark 2. The Theorem is interesting because it captures an invariant.
For there are uncountably many different unfoldings depending upon the
uncountably many possible initial phase-lags. But they all have one

property in common, namely x, and this is precisely what the theorenm

captures.




24

Remark 3. The converse of the theorem, going from x to the sequence which
starts from a coincidence, was discovered over a century ago by Christoffel
[2] and Smith [12]. However by Remark 1| this 1is less useful for

applications.

Remark 4. The algorithm is self-correcting. For suppose a new moon was so
close to a new year that the observer made an error by recording them in
the wrong order. This would show up in some derived sequence by producing
an alien term not equal to either n or n+l1, which would then swiftly lead

to the detection and correction of the error.
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of proof is less appealing to the modern mathematical mind, and when I
explained it to Caroline Series she produced the much lovelier geometrical
proof above. Furthermore she used it to develop new results in hyperbolic

geometry and number theory [11].
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