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ABSTRACT

In this paper we introduce a new method for solving partial and ordinary differential equations
with large first, second and third derivatives of the solution in some part of the domain using the
finite element technique (here called the Galerkin-Gokhman method). The method is based on the
application of the Galerkin method to a modified differential equation. The exact solution of the
modified equation is the Galerkin approximation for the unknown function with exact values of the
unknown at the nodal points.

An application of the Galerkin-Gokhman method to a general second order nonlinear ordinary
differential equation and to Navier-Stokes equations in the case of developing flow in a pipe is
formulated. We also include the results of an application of the Galerkin-Gokhman method to two
specific ordinary differential equations. One is: y − dy/dx = 0, the other one is a second order
nonlinear equation describing fully developed turbulent flow in a pipe.

NOMENCLATURE

Gi global shape function for Galerkin approximation
l Prandtl mixing length
p pressure
R, D radius and diameter of pipe
r, z cylindrical coordinates
Re Reynolds number for flow through the pipe (v̄zD/ν)
vr, vz velocity components in r and z directions
v̄z average axial velocity in a pipe
V0 functional space
x independent variable
y solution of the differential equation
ys spline representation of the solution
ỹ Galerkin approximation for the solution
ye exact solution of the differential equation
(δvz)max maximum error in computation of vz

∆y difference between ys and ỹ
η relative radius (= r/R)
λ unitless parameter in the formula for Gi
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ν Newtonian kinematic viscosity
νt, νe Boussinesq turbulent and effective kinematic viscosities
ρ density of fluid
τ tangential stress in the fluid

INTRODUCTION

The Galerkin method is widely used for finite element solutions of Navier-Stokes equations. It
provides acceptable accuracy of the solution for the flows with small values of Reynolds number
[1,2]. However, when first, second and third derivatives of the solution are large in some part of the
domain the application of the Galerkin method to ordinary and partial differential equations leads
to unacceptable errors. We shall refer to functions with large first, second and third derivatives
in some part of the domain as steep. The most important example of this phenomenon occurs in
Navier-Stokes equations for internal flow at high Reynolds numbers. In this case, the velocity of the
flow changes in a highly nonlinear fashion at the wall of the conduit which causes significant errors
in the solution [3,4].

In order to provide a solution of Navier-Stokes equations for internal flows at high Reynolds
numbers the author of the present paper in 1986-1987 developed an extension of the Galerkin
method which further will be called the Galerkin-Gokhman method. In 1988-1989 the Electric Power
Research Institute, Palo Alto, funded a research project ”Applicability of the Galerkin-Gokhman
Method to the Solution of Navier-Stokes Equations Using Finite Element Technique”. The results
of this research showed the superiority of the Galerkin-Gokhman Method and its capability to yield
an accurate solution.

The present paper is the first in a series of papers devoted by author to the Galerkin-Gokhman
method and the application of this method to the solution of Navier-Stokes equations.

1. FORMULATION OF THE GALERKIN METHOD FOR THE NONLINEAR
SECOND ORDER ORDINARY DIFFERENTIAL EQUATION

We will demonstrate the Galerkin-Gokhman method as applied to an ordinary differential equa-
tion (ODE). Since the Navier-Stokes equations are second order partial differential equations (PDE)
with second order nonlinearity we will consider a second order ODE with second order nonlinearity:

f

(
d2y

dx2
,
dy

dx
, y, x

)
= 0 x ∈ (0, 1) (1)

with boundary conditions:

y(0) = 0, y′(1) = 0. (2)

A solution y is sought in a functional space V0 of sufficiently smooth functions satisfying a
homogeneous condition at x = 0.
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We assume that the space V0 has a countable basis G1, G2, ..., which means that any function
w ∈ V0 can be expressed as an infinite combination of basis functions [5]:

w =
∞∑

i=1

aiGi. (3)

Now we try to an select element y ∈ V0 for which the left part of (1) is identically zero. The left
part of (1) is identically zero if its projection on each basis function is zero:∫ 1

0

f

(
d2y

dx2
,
dy

dx
, y, x

)
Gidx = 0. (4)

i = 1, 2, ...

The idea behind the Galerkin method consists of taking the finite dimensional subspace V0N of
V0 spanned by basis functions G1, G2, .., GN .

An approximate problem then is defined as:

Find ỹ ∈ V0N such that∫ 1

0

f

(
d2ỹ

dx2
,
dỹ

dx
, ỹ, x

)
Gidx = 0. (5)

i = 1, 2, ...n

The approximate solution, being a function in V0N , has the form:

ỹ =
n∑

i=1

aiGi. (6)

The most convenient presentation for ỹ is:

ỹ =
n∑

i=1

yiGi (7)

where yi are unknown values of the function y = y(x) at the points xi (i = 1, 2, ..., n).
The easiest way to define the continuous functions Gi(x) is to require that:

Gi(xi) = 1

Gi(x) = 0 for x ≤ xi−1 x ≥ xi+1

Defined this way basis functions are called global shape functions. Now we can write:

dỹ

dx
=

n∑
i−1

yi
dGi

dx
(8)

and

d2ỹ

dx2
=

n∑
i=1

yi
d2Gi

dx2
. (9)

It is clear from (9) that in order to solve a second order equation the shape functions have to be
at least parabolic (for the linear shape functions the terms with second derivatives are identically

3



zero). All of the domain of the variable x (0,1) where we are looking for solutions must be divided
into (n − 1)/2 elements (n has to be the odd number).

For a general element k = (i + 1)/2 (i = 1, 3, ..., n− 2) with vertex nodal points xi and xi+2 and
middle nodal point xi+1 = 0.5(xi + xi+2), the parabolic shape functions are described bellow.

At the point xi:

Gi(x) = 0 [x ≤ xi−2 and x ≥ xi+2], (10)
Gi(x) = 0.5λ(λ + 1) [xi−2 ≤ x ≤ xi], (11)

where

λ = 2(x − xi−1)/(xi − xi−2) [−1 ≤ λ ≤ 1],

Gi(x) = 0.5λ(λ − 1) [xi ≤ x ≤ xi+2] (12)

where

λ = 2(x − xi+1)/(xi+2 − xi) [−1 ≤ λ ≤ 1].

At the point xi+1:

Gi+1(x) = 0 [x ≤ xi and x ≥ xi+2], (13)
Gi+1(x) = 1 − λ2 [xi ≤ x ≤ xi+2] (14)

where

λ = 2(x − xi+1)/(xi+2 − xi) [−1 ≤ λ ≤ 1].

Now substituting (7), (8) and (9) into (5) we obtain a system of n − 1 algebraic equations with
n − 1 unknowns. We do not write the equation of type (5) for i = 1, because y1 is known from the
boundary condition y1 = y(0) = 0.

The system of equations (5) is a system of quadratic equations, since our ODE is of second order
of nonlinearity. The system of second order algebraic equations can be iteratively solved using the
Newton-Raphson method.

Naturally the approximate solution differs from the exact solution of the equation (1)

yi 6= ye(xi) (15)

where ye(xi) is the exact value of the function at x = xi and yi is the result of the Galerkin solution.
The idea of the Galerkin-Gokhman method is based on the modification of the equation (1)

in such a way that it will yield a solution in the form of a finite linear combination of the basis
functions, i.e. of the form (7). Let us assume that the exact solution of the equation (1) ye = ye(x)
is known and let
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∆y = ye(x) −
n∑

i=1

ye(xi)Gi x ∈ (0, 1) (16)

then

d(∆y)
dx

=
dye(x)

dx
−

n∑
i=1

ye(xi)
dGi

dx
(17)

and

d2(∆y)
dx2

=
d2ye(x)

dx2
−

n∑
i=1

ye(xi)
d2Gi

dx2
. (18)

If we use in the equation (1) instead of y the corrected value y + ∆y, then the equation (1)
becomes:

f

{[
d2y

dx2
+

d2(∆y)
dx2

]
,

[
dy

dx
+

d(∆y)
dx

]
, [y + ∆y] , x

}
= 0, (19)

i.e. the modified equation:

fm

(
d2y

dx2
,
dy

dx
, y, x

)
= 0. (20)

It follows from (16), (17) and (18), that the substitution of ỹe into (19) leads to

f

(
d2ye

dx2
,
dye

dx
, ye, x

)
= 0.

Therefore, the solution of (20) is:

ỹe =
n∑

i=1

ye(xi)Gi x ∈ (0, 1).

Thus applying the Galerkin method to the modified equation (20) we obtain a system of quadratic
algebraic equations:∫ 1

0

fm

(
d2ỹ

dx2
,
dỹ

dx
, ỹ, x

)
Gi(r) = 0 (21)

i = 2, ..., n

and since ỹe is the exact solution of the modified equation (20) it is also the solution of the system
of equations (21). Consequently if one finds the exact corrective function ∆y using the method of
iteration, the system (21) will yield the exact values of y(xi).

With respect to this it is important to emphasize that in order to be a solution of (20) the function
ỹ must have continuous first and second derivatives. Therefore the parabolic shape functions in
principle are not providing the exact solution when one uses the Galerkin-Gokhman method. The
alternative shape functions are third order polynomials specified for two nodal point elements (see
section 2). These shape functions yield ỹ ∈ C2. However, practical computations show that the
utilization of parabolic functions provides sufficient accuracy if the segments ∆xi = xi+1 − xi are
not smaller than a certain value.
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The iterative process is constructed in the following way. First the Galerkin method is applied
to the original equation (1) and the system of the algebraic equations (5) yields the first iteration

for yi(i = 1, ..., n). Then the values yi(i, ..., n) are splined and the first iteration of ∆y,
d(∆y)

dx
and

d2(∆y)
dx2

can be obtained for every x ∈ (0, 1)

∆y = ys(x) − ỹ(x), (22)

d(∆y)
dx

=
dys(x)

dx
− dỹ(x)

dx
, (23)

d2(∆y)
dx2

=
d2ys(x)

dx2
− d2ỹ(x)

dx2
(24)

where ys(x),
dys(x)

dx
are obtained using the splining technique and

d2ys(x)
dx2

is computed from equation

(1) using these values. The need to compute
d2ys(x)

dx2
directly from (1) arises due to the fact that in

case when ys(x) is a steep function the splining technique does not yield acceptable accuracy for the
second derivative. Evidently, for parabolic shape functions the formulas (23) and (24) do not make
sense at the points x = xi (i = 3, 5, ..., n− 2).

The modified equation for the second iteration is:

f

{[
d2y

dx2
+

d2(∆y)
dx2

]
,

[
dy

dx
+

d(∆y)
dx

]
, [y + ∆y], x

}
= 0 (25)

or

fm

(
d2y

dx2
,
dy

dx
, y, x

)
= 0.

If the equation (1) were linear and homogeneous, then the following would be true:

fm

(
d2y

dx2
,
dy

dx
, y, x

)
= f

(
d2y

dx2
,
dy

dx
, y, x

)
+ f

[
d2(∆y)

dx2
,
d(∆y)

dy
, ∆y, x

]
. (26)

Now applying the Galerkin method to the modified equation (20) we can find the new values

yi(i = 1, 2, .., n) and new functions ∆y,
d(∆y)

dx
and

d2(∆y)
dx2

etc. When the process converges (if

it converges) we will find the highly accurate values for yi(i = 1, ..., n). The error is caused only
by inaccuracies of the splining technique. The inaccuracies of the splining technique with regard

to ys(x) and
dys(x)

dx
can be made smaller than any desired value, and the value of

d2ys(x)
dx2

can

be computed directly from (1) with the same accuracy, Therefore, the inaccuracy of the Galerkin-
Gokhman method can be made smaller than any desired value.

The following question arises naturally in this connection: why not use the splines as the shape

functions taking for coefficients ai in (6) the unknown values of yi and
dy

dx

∣∣∣∣
i

. The answer is simple.

First, the second derivatives of the solution in a form of the spline with predefined values of
dy

dx

∣∣∣∣
i

are discontinuous at the nodal points. Second, when the solution y = y(x) of the equation (1) is a
steep function, the cubic spline, this time with continuous second derivatives at the nodal points,
fails to represent the second derivatives in the zone of large first, second and third derivatives of the
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solution (see section 3). Therefore, the splining technique cannot be used directly for finite element
analysis in applications to second order differential equations whose solutions are steep functions.
Direct application of fifth order splines was not analyzed, because of the large number of unknowns.
In two dimensions we have a 5 fold increase in the number of unknowns going from cubic to quintic
splines.

2. GALERKIN APPROXIMATION WITH CONTINUOUS FIRST AND SECOND
DERIVATIVES

In order for the function ỹ = ỹ(x) to pass through the two nodal point elements with continuous
the first and the second derivatives one can use the cubic spline (i = 1, 2, ..., n − 1, where n is the
number of nodal points):

y(i) = yiGi + yi+1Gi+1 (27)
xi ≤ x ≤ xi+1

where
Gi = 1 + a1,iλ + a2,iλ

2 − (1 + a1,i + a2,i)λ3

Gi+1 = a1,iλ + a2,iλ
2 + (1 − a1,i − a2,i)λ3

and

λ =
x − xi

∆xi
.

It is easy to see from (27) that

y(i) |λ=0= yi (x = xi)

y(i) |λ=1= yi+1 (x = xi+1)

Differentiating (27) we can find

dy(i)

dx
=

1
∆xi

(
yi

dGi

dλ
+ yi+1

dGi+1

dλ

)
(28)

where
dGi

dλ
= a1,i +2a2,iλ − 3(1 + a1,i + a2,i)λ2,

dGi+1

dλ
= a1,i +2a2,iλ + 3(1 − a1,i − a2,i)λ2.

Now differentiating (28) we find that
d2y(i)

dx2
=

1
(∆xi)2

(
yi

d2Gi

dλ2
+ yi+1

d2Gi+1

dλ2

)
(29)

where

d2Gi

dλ2
= 2a2,i − 6(1 + a1,i + a2,i)λ,
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d2Gi+1

dλ2
= 2a2,i + 6(1 − a1,i − a2,i)λ.

The 2(n − 1) unknown values of a1,i and a2,i (i = 1, 2, ..., n − 1) can be found from the 2(n − 2)
continuity conditions for the first and second derivatives at nodal points (excluding the first and last
ones):

dy(i)

dx

∣∣∣∣
λ=1

=
dy(i+1)

dx

∣∣∣∣
λ=0

,

(30)

d2y(i)

dx2

∣∣∣∣
λ=1

=
d2y(i+1)

dx2

∣∣∣∣
λ=0

.

and two additional conditions at the first and last nodal points (specification of the first derivatives
dy

dx

∣∣∣∣
1

and
dy

dx

∣∣∣∣
n

.

The final form of the system of the linear algebraic equations for the determination of a1,i and
a2,i (i = 1, ..., n − 1) follows:

a1,1(y1 + y2) =
dy

dx

∣∣∣∣
1

∆x1,

a1,n−1[2(yn−1 + yn)] + a2,n−1(yn−1 + yn) = − dy

dx

∣∣∣∣
1

∆xn−1 + 3(yn − yn−1)

and for i = 2, 3, ..., n − 1 (31)

a1,i−1[2(yi−1 + yi)] + a2,i−1(yi−1 + yi) + a1,i[ci(yi + yi+1)] = 3(yi − yi−1),

a1,i−1[3(yi−1 + yi)] + a2,i−1[2(yi−1 + yi)] + a2,i[c2
i (yi + yi+1)] = 3(yi − yi−1)

where

ci =
∆xi−1

∆xi
.

The shape functions yielding the Galerkin approximation with continuous first and second deriva-
tives change during the iterative process since the values of a1,i and a2,i depend on the distribution of
yi. In this situation the first iteration for a1,i and a2,i must be obtained using the solution obtained
with conventional shape functions, linear or parabolic.

A differential equation, whose solution is not a steep function can be solved using shape functions
described in this section without the modification employed in the Galerkin-Gokhman method.
However, as was mentioned above we will show in section 3, that for a second order ODE whose
solution is a steep function this approach will not work, because the values of the second derivative
for the solution cannot be obtained with acceptable accuracy by the splining technique.

3. COMPARISON OF THE GALERKIN AND THE GALERKIN-GOKHMAN
METHODS IN APPLICATION TO TWO ORDINARY DIFFERENTIAL

EQUATIONS
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The first application used to compare the Galerkin and the Galerkin-Gokhman methods was an
equation often employed in numerical analysis for comparison of different numerical methods [6]:

y − dy

dx
= 0, y(0) = 1, [0 ≤ x ≤ 1]. (32)

The modified equation is:

y − dy

dx
+ ∆y − d∆y

dx
= 0 (33)

where:

∆y = ys(x) − ỹ(x).
The segment [0, 1] was divided into four equal elements with five nodal points x = 0.00, 0.25, 0.50, 0.75, 1.00.
The finite element solution was based on linear shape functions. The functions ỹ = ỹ(x) and
ys = ys(x) are shown in Figure 1. The results of computation are presented in Table 1. The
Galerkin method yields a solution with the maximum relative error of 0.03288 at x = 0.25 and
the maximum error of the Galerkin-Gokhman solution for the fourth iteration is 0.00304. For the
thirty second iteration the maximum error is 0.00003 at the same point x = 0.25. In addition, it
can be seen from Table 1 that the maximum error in computation of the derivative for the fourth
iteration is 0.00844. In the case of solution of the equation (32) the splining technique could be

applied directly (Galerkin approximation with unknown values for yi and
dy

dx

∣∣∣∣
i

) because this is the

first-order equation with gradual change of solution along the entire domain.

The second application used to compare the Galerkin and the Galerkin- Gokhman methods was
a second order nonlinear ordinary differential equation describing the fully developed turbulent flow
of incompressible fluid in a pipe [1]:

d

dr

(
rνe

dvz

dr

)
− r

ρ

dp

dz
= 0 (34)

where
νe = ν − l2

dvz

dr

and
dp

dz
is the pressure gradient along the pipe,

r is the radius of the point,

vz is velocity of the flow,

ρ is the density of the fluid,

ν is the Newtonian viscosity,

l is the Prandtl mixing length.
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The boundary conditions for the solution of (34) are:

vz(R) = 0,
(35)

dvz

dr

∣∣∣∣
r=0

= 0

where R is the radius of the pipe.

The mixing length in (34) was taken according to Nikuradse with the Van Driest correction [4]:

l

R
=

[
0.14 − 0.08

( r

R

)2

− 0.06
( r

R

)4
] {

1 − exp

[
v∗(R − r)

26ν

]}
(36)

where v∗ = (τ0/ρ)0.5 (τ0 is the tangential stress at the wall).

The modified equation is:

d

dr

{
r

[
νe − l2

d(∆vz)
dr

] [
dvz

dr
+

d(∆vz)
dr

]}
− r

ρ

dp

dz
= 0 (37)

where ∆vz = vzs − ṽz .
The Galerkin integrals (projections to the basis functions Gi) of the equation (37) are (i =

1, ..., n − 1):

∫ R

0

d

dr

{
r

[
ν̃e − l2

d(∆vz)
dr

] [
dṽz

dr
+

d(∆vz)
dr

]}
Gi(r)dr−

∫ R

0

r

ρ

dp

dz
Gi(r)dr = 0 (38)

where:

dṽz

dr
=

n∑
j=1

vzj
dGj(r)

dr
,

ν̃e = ν − l2
dṽz

dr
.

Integrating by parts the first integral in (38) we obtain the final system of second order algebraic
equations for determination of vzi (i = 1, ..., n − 1):

∫ R

0

[
A

(
dṽz

dr

)2

+ B
dṽz

dr
+ C

]
dr = 0 (39)

where:

A = −l2
dGj(r)

dr
r,

B =
[
ν − 2l2

d(∆vz)
dr

]
dGj(r)

dr
r,
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C =
r

ρ

dp

dz
Gi(r)+

[
ν − l2

d(∆vz)
dr

]
d(∆vz)

dr

dGj(r)
dr

r.

The system of equations (39) yields a solution for the equation (34) using the Galerkin-Gokhman

method. The first iteration in obtaining this solution (for
d(∆vz)

dr
= 0) is the solution according to

the Galerkin method.
The global shape functions in (39) were taken as parabolic (see formulas (10)–(14)). The Galerkin

and the Galerkin-Gokhman were compared with a highly accurate solution of (34) obtained exactly
the same way as in [4].

The comparison was performed for Reynolds number Re= 107 and for the relative length of

element at wall ∆η =
R − rn−2

R
in the range 0.00005–0.00060. The results are presented in Figure

2. Figure 2 shows (δvz)max, the maximum relative error in computation of vz , versus ∆η using
the Galerkin and the Galerkin-Gokhman methods. The Galerkin method error grows drastically
with ∆η (at ∆η = 0.00010, (δvz)max = 0.02123; at ∆η = 0.00020, (δvz)max = 0.18572). On the
other hand the Galerkin-Gokhman method error grows very gradually with ∆η (at ∆η = 0.00010,
(δvz)max = 0.00681; at ∆η = 0.00020, (δvz)max = 0.00814). The minimum value of (δvz)max for
the Galerkin method is 0.00807 and for the Galerkin-Gokhman method 0.00138.

The values of
dvzs

dr
for the computation of

d(∆vz)
dr

occurring in the solution of the algebraic system

(39) for every iteration (except the first, where
d(∆vz)

dr
= 0) were obtained using a parametric spline:

η = η(s)
(40)

vz = vz(s)

where:

η =
r

R
is relative radius

s is the length along the spline

The formulas relating
dvz

ds
and

dη

ds
to

dvz

dr
are:

dvz

ds
=

dvz

dη√
1 +

(
dvz

dη

)2
.

(41)
dη

ds
=

1√
1 +

(
dvz

dη

)2

where:

dvz

dη
= R

dvz

dr
.

The spline (40) passes through the points [ηi, vz(ηi)]. The values of vz(ηi) were computed in
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the previous iteration. The values of
dvz

dr
at η = 0 and η = 1 (boundary conditions for spline

computation) were determined as follows. At η = 0 (r = 0),
dvz

dr
= 0. This is one of the boundary

conditions for (34).

At η = 1 (r = R), using the momentum equation [4]:

dvz

dr

∣∣∣∣
r=R

=
R

2ρν

dp

dz
. (42)

Table 2 compares the accuracy of computing
dvz

dη
using the parametric spline (40) and spline

vz = vz(η). Both splines were obtained using the values of vz(ηi) given by highly accurate solution
[4]. This table shows the results only for the nodal points ηi close to the pipe wall in the interval
[0.998800, 1.000000], where the highest inaccuracy occurs. This comparison shows the superiority
of the parametric spline (40).

It is easy to see that for the system of equations (39) the second derivative
d2(∆vz)

dr2
does not

appear in computations and, therefore, the accuracy of computing
d2vzs

dr2
is irrelevant in the case

of fully developed flow. However, in the case of developing flow in a pipe, considered in the next
section, the second derivatives do occur and the accuracy of their computation using the splining
technique is very important for the overall accuracy of the solution. As was mentioned in section 1

the splining technique by itself cannot yield the values of the second derivative
d2vz

dr2
with acceptable

accuracy and, therefore, the second derivative must be computed directly from (34) using the value

of the first derivative
dvz

dr
given by the parametric spline (40).

Table 3 shows the comparison of accuracy for
d2vz

dη2
computed using the parametric spline (40)

and computed directly from equation (34) using the values of
dvz

dη
given by the spline (40). The

spline (40) was obtained using the values of vz(ηi) given by the highly accurate solution [4].
The comparison in Table 3 is shown only for the nodal points ηi in the interval [0.998800, 1.000000]

where the highest inaccuracy occurs. Table 3 shows that the spline of the third order is not capable
of representing the values of velocity at the points which are near the pipe wall. At the same, time
Table 3 shows that the values of the second derivative obtained directly from equation (34) using
the values of the first derivative given by the spline (40) have acceptable accuracy.

The exact values of
dvz

dη
and

d2vz

dη2
in Tables 2 and 3 were computed using the formulas in [4],

where the highly accurate solution of the equation (34) is described.

4. FORMULATION OF THE GALERKIN-GOKHMAN METHOD FOR THE
SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS

In this section we demonstrate the application of the Galerkin-Gokhman method to a system of
partial differential equations using the example of Navier-Stokes equations for developing flow in a
pipe.
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The Navier-Stokes equations [7] for steady turbulent flow of incompressible fluid (with the z axis
being the axis of symmetry) in the absence of mass forces are:

vr
∂vr

∂r
+ vz

∂vr

∂z
= −1

ρ

∂p

∂r
+ νe

(
∂2vr

∂r2
+

1
r

∂vr

∂r
− vr

r2
+

∂2vr

∂z2

)
+

2
∂νe

∂r

∂vr

∂r
+

∂νe

∂z

(
∂vz

∂r
+

∂vr

∂z

)
, (43)

vr
∂vz

∂r
+ vz

∂vz

∂z
= −1

ρ

∂p

∂z
+ νe

(
∂2vz

∂r2
+

1
r

∂vz

∂r
+

∂2vz

∂z2

)
+

2
∂νe

∂z

∂vz

∂z
+

∂νe

∂r

(
∂vz

∂r
+

∂vr

∂z

)
(44)

where, according to Boussinesq, the effective kinematic viscosity:

νe = ν + νt (45)

and

ν is Newtonian viscosity,

νt is turbulent viscosity.

The continuity equation is:

1
r

∂(vrr)
∂r

+
∂vz

∂z
= 0. (46)

Turbulent viscosity in (45):

νt = f

(
l,

∂vz

∂r
,
∂vr

∂z

)
(47)

where:

l = l(r, z) is the Prandtl mixing length.

Therefore:

∂νe

∂r
= g

(
l,

∂l

∂r
,
∂vz

∂r
,
∂2vz

∂r2
,
∂vr

∂z
,

∂2vr

∂r ∂z

)
, (48)

∂νe

∂z
= h

(
l,

∂l

∂z
,
∂vz

∂r
,

∂2vz

∂z ∂r
,
∂vr

∂z
,
∂2vr

∂z2

)
. (49)

For each iteration, excluding the first, let (see section 1):

∆vz = vzs − ṽz

∆vr = vrs − ṽr (50)
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∆p = ps − p̃

where:

ṽz , ṽr and p̃ are the Galerkin approximations

vzs, vrs and ps are the spline representations

In a case of the Galerkin approximation with discontinuous first and second derivatives the well
known conventional formulae can be applied for ṽz , ṽr (eight nodal points element) and p̃ (four
nodal points element) see [7].

The functions for vzs, vrs and ps are defined using the formulae for splining technique presen-
tation for the function of two variables [8]. All approximations ṽz, ṽr and p̃ and vzs, vrs and ps

are based on the values of vz, vr and p determined in the previous iteration. For the first iteration
∆vz , ∆vr and ∆p are taken to be zero. Therefore the first iteration is the solution of the unmodified
equations (43), (44) and (45).

As follows from the section 1, the modified Navier-Stokes equations are:

(vr + ∆vr)
[
∂vr

∂r
+

∂(∆vr)
∂r

]
+ (vz + ∆vz)

[
∂vr

∂z
+

∂(∆vr)
∂z

]
=

−1
ρ

[
∂p

∂r
+

∂(∆p)
∂r

]
+ νem

(
∂2vr

∂r2
+

1
r

∂vr

∂r
− vr

r2
+

∂2vr

∂z2
+ fr

)
+

2
∂νem

∂r

[
∂vr

∂r
+

∂(∆vr)
∂r

]
+

∂νem

∂z

[
∂vz

∂r
+

∂vr

∂z
+

∂(∆vz)
∂r

+
∂(∆vr)

∂z

]
, (51)

(vr + ∆vr)
[
∂vz

∂r
+

∂(∆vz)
∂r

]
+ (vz + ∆vz)

[
∂vz

∂z
+

∂(∆vz)
∂z

]
=

−1
ρ

[
∂p

∂z
+

∂(∆p)
∂z

]
+ νem

(
∂2vz

∂r2
+

1
r

∂vz

∂r
+

∂2vz

∂z2
+ fz

)
+

2
∂νem

∂z

[
∂vz

∂z
+

∂(∆vz)
∂z

]
+

∂νem

∂r

[
∂vz

∂r
+

∂vr

∂z
+

∂(∆vz)
∂r

+
∂(∆vr)

∂z

]
(52)

where:

νem = ν + f

[
l,

∂vz

∂r
+

∂(∆vz)
∂r

,
∂vr

∂z
+

∂(∆vr)
∂z

]
, (53)

∂νe

∂r
= g

[
l,

∂l

∂r
,
∂vz

∂r
+

∂(∆vz)
∂r

,
∂2vz

∂r2
+

∂2(∆vz)
∂r2

,

∂vr

∂z
+

∂(∆vr)
∂z

,
∂2vr

∂r ∂z
+

∂2(∆vr)
∂r ∂z

]
, (54)

∂νe

∂z
= h

[
l,

∂l

∂z
,
∂vz

∂r
+

∂(∆vz)
∂r

,
∂2vz

∂z ∂r
+

∂2(∆vz)
∂z ∂r

,

∂vr

∂z
+

∂(∆vr)
∂z

,
∂2vr

∂z2
+

∂2(∆vr)
∂z2

]
, (55)
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fr =
∂2(∆vr)

∂r2
+

1
r

∂(∆vr)
∂r

− (∆vr)
r2

+
∂2(∆vr)

∂z2
, (56)

fz =
∂2(∆vz)

∂r2
+

1
r

∂(∆vz)
∂r

+
∂2(∆vz)

∂z2
. (57)

The modified continuity equation is:

1
r

[
∂(vrr)

∂r
+

∂(∆vrr)
∂r

]
+

∂vz

∂z
+

∂(∆vz)
∂z

= 0. (58)

The domain for the solution of Navier-Stokes equations describing developing flow in a pipe is
shown on Figure 3. Here zFD is the value of z where the flow is considered to be fully developed. The
value zFD is usually taken to be up to 150 pipe diameters [7]. In order to apply the splining technique
to the solution obtained as a result of the current iteration, we need to know the appropriate values
for the partial derivatives along the boundaries of the domain. These boundary conditions are
evaluated below.

1. Inlet to the pipe ( 0 ≤ r ≤ R, z = 0 )

Here we need to evaluate
∂vz

∂z

∣∣∣∣
I

,
∂vr

∂z

∣∣∣∣
I

and
∂p

∂z

∣∣∣∣
I

.

We assume that at the inlet vrI = 0, vzI = const and pI = const. Therefore, we have:

∂vr

∂r

∣∣∣∣
I

= 0,
∂(vrr)

∂r

∣∣∣∣
I

= 0,
∂2vr

∂r2

∣∣∣∣
I

= 0,

(59)
∂vz

∂r

∣∣∣∣
I

= 0,
∂2vz

∂r2

∣∣∣∣
I

= 0.

Now, using (59) we obtain from (46) that:

∂vz

∂z

∣∣∣∣
I

= 0. (60)

In order to simplify the evaluation we will assume that:

∂vr

∂z

∣∣∣∣
I

= 0. (61)

It follows from (46), after differentiation with respect to z, and from (61) that:

∂2vz

∂z2

∣∣∣∣
I

= 0 (62)

and finally from equation (44) using (59), (60), (61), and( 62):

∂p

∂z

∣∣∣∣
I

= 0.

The assumption (61) is not required. However, its absence would lead to a cumbersome analysis
of the iterative process for the evaluation of boundary conditions, which falls outside the scope of
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present paper.

2. Outlet of the pipe ( 0 ≤ r ≤ R, z = zFD )

Here we also need to evaluate
∂vz

∂z

∣∣∣∣
O

,
∂vr

∂z

∣∣∣∣
O

and
∂p

∂z

∣∣∣∣
O

.

Since the flow at the outlet is fully developed, we have:

∂vr

∂z

∣∣∣∣
O

= 0,
∂vr

∂z

∣∣∣∣
O

= 0,
∂p

∂z

∣∣∣∣
O

= const.

However, the value of
∂p

∂z

∣∣∣∣
O

is not known, so the equivalent condition
∂2p

∂z2

∣∣∣∣
O

= 0 is used.

3. Axis of the pipe ( r = 0, 0 ≤ z ≤ zFD )

The obvious boundary conditions are:

∂vz

∂r

∣∣∣∣
A

= 0,
∂vr

∂r

∣∣∣∣
A

= 0,
∂p

∂r

∣∣∣∣
A

= 0.

4. The wall of the pipe ( r = R, 0 ≤ z ≤ zFD )

We need to evaluate the values of
∂vz

∂r

∣∣∣∣
W

,
∂vr

∂r

∣∣∣∣
W

and
∂p

∂r

∣∣∣∣
W

.

Along the wall we have:

vzW = 0,
∂vz

∂z

∣∣∣∣
W

= 0,
∂2vz

∂z2

∣∣∣∣
W

= 0,

(63)

vrW = 0,
∂vr

∂z

∣∣∣∣
W

= 0,
∂2vr

∂z2

∣∣∣∣
W

= 0

and because of the laminar sublayer:

νeW = ν,
∂νe

∂z

∣∣∣∣
W

= 0. (64)

On the other, hand from (46) and (63) it follows that:

∂vr

∂r

∣∣∣∣
W

= 0 (65)

Therefore, using (63), (64), and (65) equation (43) is reduced to:

1
ρ

∂p

∂r

∣∣∣∣
W

= ν
∂2vr

∂r2

∣∣∣∣
W

. (66)

The value of
∂2vr

∂r2

∣∣∣∣
W

in (66) can be obtained after splining vr using the boundary condition (65).

The last boundary value to be obtained is
∂vz

∂r

∣∣∣∣
W

. For this purpose we use the momentum

equation along z (see Figure 3.):
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τ =
1
R

∫ R

0

∂p

∂z
rdr. (67)

However, at the pipe wall:

τ = ρν
∂vz

∂r

∣∣∣∣
W

. (68)

Therefore, using (67) and (68) we get:

∂vz

∂r

∣∣∣∣
W

=
1

ρνR

∫ R

0

∂p

∂z
rdr. (69)

The function
∂p

∂r
=

∂p

∂r
(r) in (69) is the result of the previous iteration.

The functions vzs, vrs, ps and their first derivatives with respect to r and z can be obtained
with acceptable accuracy using the splining presentations of vz , vr and p by themselves (see section
3). Since vr is small and both vz and vr do not change drastically in the z-direction, the following
second derivatives of velocity components can also be computed with acceptable accuracy using the
splining presentations by themselves:

∂2(vr)s

∂z2
,

∂2(vz)s

∂z2
,

∂2(vr)s

∂r ∂z
.

On the other hand the derivatives:

∂2(vz)s

∂r2
,

∂2(vr)s

∂r2
,

∂2(vz)s

∂r ∂z

must be computed using the values of all other derivatives obtained using the splining technique by
itself from Navier-Stokes equations (43), (44) and from the equation obtained by differentiating the
continuity equation (46) with respect to r:

∂2vr

∂r2
+

1
r

∂vr

∂r
− vr

r2
+

∂2vz

∂r ∂z
= 0.

As shown in section 3, this approach leads to acceptable accuracy in computation.

CONCLUSION

The new method for solving ordinary and partial differential equations using the finite element
technique when the solution is a steep function (the Galerkin-Gokhman method) provides signifi-
cantly better accuracy for the same discretization than the conventional Galerkin procedure for the
second order nonlinear ordinary differential equation describing fully developed flow in a pipe.
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TABLE 1

Relative errors δ(y) and δ

(
dy

dx

)
in computation of y and

dy

dx
for the equation:

y − dy

dx
= 0 using the Galerkin-Gokhman method.

Iteration 1 (The Galerkin Method)

x y δ(y)

18



0.00000 1.00000 0.00000
0.25000 1.24181 0.03288
0.50000 1.63339 0.00930
0.75000 2.06156 0.02619
1.00000 2.68002 0.01407

Iteration 4

x y δ(y)
dy

dx
δ

(
dy

dx

)

0.00000 1.00000 0.00000 1.00000 0.00000
0.25000 1.28012 0.00304 1.29486 0.00844
0.50000 1.64622 0.00152 1.64473 0.00242
0.75000 2.11277 0.00200 2.12747 0.00495
1.00000 2.71293 0.00197 2.72534 0.00260

Iteration 32

x y δ(y)
dy

dx
δ

(
dy

dx

)

0.00000 1.00000 0.00000 1.00000 0.00000
0.25000 1.28407 0.00003 1.28404 0.00001
0.50000 1.64874 0.00001 1.64871 0.00001
0.75000 2.11706 0.00003 2.11701 0.00001
1.00000 2.71832 0.00001 2.71833 0.00002

TABLE 2

Relative error δ

(
dvz

dη

)
in splining representation of

dvz

dη
for Re=107.

ηi
dvz

dη
δ

(
dvz

dη

)
δ

(
dvz

dη

)
Nodal Points Exact Values Spline: vz = vz(η) Parametric Spline

0.998800 -57.701622 0.00539 0.00015
0.999100 -77.014101 0.01461 0.00031
0.999400 -117.014101 0.02507 0.00091
0.999600 -186.464550 0.05778 0.00303
0.999800 -466.337151 0.01844 0.00973
0.999850 -708.084207 0.01222 0.00737
0.999900 -1281.849549 0.00502 0.00653
0.999925 -1903.870475 0.00493 0.00377
0.999950 -3000.130832 0.01219 0.00218
0.999975 -4204.519965 0.00766 0.00515
1.000000 -4430.460863 0.00000 0.00000
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TABLE 3

Relative error δ

(
d2vz

dη2

)
in computation of

dvz

dη
using parametric spline for Re=107.

ηi
d2vz

dη2
δ

(
d2vz

dη2

)
δ

(
d2vz

dη2

)
Nodal Points Exact Values Spline Only Spline and Equation

0.998800 -47961.956 0.00633 0.00015
0.999100 -86676.235 0.01181 0.00031
0.999400 -211604.762 0.00500 0.00092
0.999600 -561704.632 0.03962 0.00309
0.999800 -3324546.134 0.06604 0.01027
0.999850 -6940590.540 0.03547 0.00801
0.999900 -18371229.352 0.06016 0.00763
0.999925 -32965399.067 0.03698 0.00480
0.999950 -54317924.688 0.08902 0.00330
0.999975 -28569779.891 0.27617 0.00986
1.000000 -4430.461 1472.45067 0.00000

FIGURE CAPTIONS

Figure 1. The first iteration for the solution of equation y − dy

dx
= 0 using the Galerkin-Gokhman

method.

Figure 2. Parametric study of the accuracy of the solution for the equation describing fully
developed flow in a pipe using the Galerkin and Galerkin-Gokhman methods at Re=107.

Figure 3. Developing flow in a pipe.
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