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ABSTRACT

Numerical generation of streamlines along an arbi-
trary stream surface is discussed in the present
work. Using a given set of nodal Cartesian coordin-
ates, which define a stream surface, and the associ-
ated velocities at each node, a new non-orthogonal,
curvilinear coordinate system (p,q) is devised along
the surface. On the basis of this curvilinear system
a piecewise, analytically defined surface is gener-
ated passing through the p and q coordinate lines.
Using the velocity components at each nodal point, a
piecewise, amalytical representation of the velocity
distribution (as a function of p and q), along the
surface is determined. Using the differential geom-
etry of the surface and velocity distribution along
it, a set of streamlines is calculated along with an
additional set of streamline orthogonal lines.
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1.0 INTRODUCTION

Results of flow analyses (based on a finite element
analysis or a finite difference technique) in turbo-
machines are inevitably given in the form of a finite
set of points (defined by Cartesian coordinates) de-
scribing the blade surface, and relative flow
velocity components at these points. These velocity
com-ponents form a relative velocity vector tangen-
tial to the blade surface. Thus the blade surface
is a stream surface. However, it is impossible to
apply these results directly to a three-dimensional
boundary layer analysis of the flow along the sur-
face. A widely accepted way of performing an analy-
sis of this type requires the knowledge of a curvi-
linear coordinate system formed by the relative flow
streamlines and perpendiculars to these streamlines,
along with the velocity distribution expressed in
this coordinate system. In the present work, the
generation of the nonorthogonal curvilinear coordin-
ate system (which is comprised of the streamlines
and their corresponding orthogonals) is based on a
new splining technique. The splining technique is
applied to geometrical properties of curves, sur-
faces and the piecewise analytical presentation of
functions of one and two variables. The splines pre-
sented in this work are used in the form of the
Hermite Interpolant Polynomial [1] and the new
approach is used in the determination of the first
derivatives at the nodal points. The streamlines
are computed using a method which involves a
numerical solution of a system of ordinary. differ-
ential equations developed by A. Gokhman and R.
Goldstein [2].

2.0 SPLINING TECHNIQUE BASED ON THE HERMITE INTER-
POLANT POLYNOMINAL

2.1 The Function of One Variable

The well known formula for the Hermite Interpolant
Polynomial for the representation of a function of

one variable, yl(x), on a segment [x., x.,.], is the
» i i#l
following:
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Previously, this formula has been utilized for inter- l
X
polation of yl(x) in the case when %% | and g% |
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were known, or in the one-dimensional finite element

analysis when g4y | and ay | were considered as
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independent variables and found as a result of
solution. However, to the best of the authors'
knowledge, this polynomial has never been applied
to the spline representation of a function when
only the values of y, are known at each nodal point

along a curve representing the function y = y(x).

Applying formula (1) to the segment [xi+1, xi+2] one
receives:
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Using (1), (2) and (4) it is easy to see that the
Hermite Interpolant Polynomial assures the con-
tinuity of the functional values at each node
since:
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Using (1), the derivative of yl(x) by X can be
obtained in this way:
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Formula (9) illustrates that the Interpolant
Polynomials (1) and (4), assure first derivative
continuity at each nodal point.

If a function y=y(x) is defined by values of v at

Xy (i=1,...,n) points , determination of the values
%% | (i=2,...,n-1) requires the imposition of the

i following conditions:

1. The continuity of the second derivatives at
each nodal point (i=2,...n-1) must be
satisfied.

2. Additional conditions at the points i=1 and i=n
must be provided. These conditions could be:

* The values of dy | and ay | are known
- dx . dx . _
a priori i=1 i=n
**The second derivatives at i=1 and i=n are
accepted as zero.

In this connection, it is necessary to note that when
dealing with periodic functions these additional con-
ditions are not needed. One can simply use equality
of the first and second derivative at the points

i=1 and i=n.

Using the chain rule and (7) one can obtain the
following expression for the second derivative
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To obtain the condition necessary to guarantee
continuity of the second derivative at the nodal
points, an expression similar to (10) is developed
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Formula (13) is thus used for computing the first
derivative by a method of iterations. As previously
mentioned, it is necessary to determine values for
the derivatives only at the included points
(i=2,...,n-1). Calculation of the first derivatives
at the extreme points is obviously not necessary
when specified. In the case when the second
derivatives are accepted as zero at X, and X,

dy | 1is expressed using gy | and dy | is
dx 1 dx P dx 5

expressed using g% | . Indeed using (10) one
n~1

can obtain:



dy | o ’ < 9z
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As with any iteration scheme, an initial estimation
must be used to begin the process. In this method
an initial iteration for the first derivitive at
each interior node is computed using the simplest
finite difference formula. Consequent iterations
using (13) illustrate expedient convergence. The
comparison with conventional splining methods, which
utilize the solution of a tri-diagomal matrix, shows
substantial savings in computational time. As it is
well known computation of the first derivative by
this method yields high accuracy.

Evidently formula (1) yields the possibility of
interpolation for values of X by a given Yo

Establishing to which segment X, belongs is the

first step (it may, of course, be on several seg-
ments). Second, on each segment i to which s

belongs (yi LY, K iy OF Viqq S ¥, 8 yi) one

1

must compute the first iteration for X using linear

interpolation. Later the following cubic equation
must be solved:

dy
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Equation (14) is solved by the method of iterations
presenting:
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where: Al =
o

Using (14) one can obtain a first order equation for
determing 6A°:

AGAO +B+e=0 (15)
where: A and B are the second and third order
polynomials of A;; and € is the poly-
nomial of two variables (A; and GAO) which
contains the higher order degrees of 6A0.

The solution of (15) converges very quickly and
yields the value of X in question as:

X = A Ax, + X,
o o i i

2.2 The Geometrical Curve

The same approach can also be applied to a piecewise
representation of curves in parametrical form. A
curve, given by a finite set of Cartesian coordin-
ates, (xi,yi,zi) i =1,...,n can be presented in

parametrical form as:

x = x(2)
y = y(8) (16) |
z = z(2)

where £ is a parameter. It is very useful here to
define £ as length along the curve since it will
allow the computation of differential parameters at
any point. Accepting this definition for £ it

is then possible to represent coordinate x5 (xi < x*
< xi+1) using the Hermite Interpolant Polynomial:
xl(l) = xiH +

01 T ¥i+1fp2 11
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where H01, HOZ’ H11 and H12 are defined by (2) and

similarly, A can be expressed as:

2-8,
A= 33,
1

(18)

Formulae for y and z are similar to (18).

If it is desired to declare £ as the true length
along the curve at nodal points (it can obviously
not be equal to the true length at each point),
one must also find the length by a method of
iterations. Iterations for length and first
derivatives for each node must be properly com-
bined. At the outset, the parameter £ at each
nodal point is determined using the Pythagorean
theorem:
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Using the first iteration for length at the nodal
; . . dx dy dz
points, the derivatives iz I' T I. and i
i i
(i=1,...,n) are determined in the same manner as

before when dealing with a function of one vari-
able. For subsequent iterations, Aﬁi is calculated
using:
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Formulae for dydil) and dz_(2)

dA

are similar.

Both iterations converge very quickly and if the
proper number and distribution of points along the
curve are used, results of the first derivative
computation are very accurate. Illustration of

this can be found in Table 1 which presents a
comparison of the first and second derivatives
computed by the proposed method, with exact ana-
lytical values for the curve y = sin x [0 <x<2mnl.

As seen in Table 1, ( %% )2+ ( g% )2 is not

exactly equal to one. This slight inequality is
attributed to the fact that the parameter £ is equal
to genuine length along the curve only at nodal
points. Table 1 also shows a close apoproximation
between calculated and analytical values of the
second derivative. Thus, the proposed technique
can be successfully applied (especially when the
points are not near the ends and where second der-
ivatives are accepted as zero) for computing second
derivatives and subsequently curvature and torsion.
Table 2 shows a comparison of differential para-
meters and length at the nodal points computed by
the proposed method with analytically obtained
values for a cardioid. p = a(l-cos¢) [0<¢<2m]

It is necessary to mention that in the case of a
periodic or closed curve, with continuous first and
second derivatives at each point (cardioid has a dis-
continuity of the first derivative at the point

$¢=0), conditions 2 (Section 2.1) at the ends are

not required.

The system of equations presented by (17) allows

first find all segments to which X belongs.

Secondly, one has to find the first iteration for Y,

and z using linear interpolation:
Y. Y.
il - 74
yé =% - X (xo B xi)
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=it e, o )
i+l i

Now, the first iteration for A can be established as:
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Knowing Aé one can easily solve the equation:
= 1
X f(AO, S8A)

by the method described for the function of one
variable.

3.0 APPLICATION OF SPLINING TECHNIQUE TO FUNCTION
OF TWO VARIABLES AND GEOMETRICAL SURFACE

3.1 Function of Two Variables

If a function of two variables x = f(xi,yj) is de-
fined by a set of values z, j (x,y) on each rec-

4
tangle (with vertices (xi,yi), (xi+1,yj),

inte{:polation3 i.e., with.oge given coordinate it.is (xi+1’y'+1) and (x.,y.+1)) and as:

possible to find the reamining two (for example, if J 7]

X is given, v, and z  may be determined). One must

TABLE 1
Splining Results for Line y = sin x
X y dx/de dy/de §(dx/dL) 5(dy/de)  S8[(dx/de)2 + &(d2x/d2?2) §(d?y/de?)
(dy/d2)2?]

0.00000 0.00000 0.70710 0.70712 0.00001 0.00001 0.00000 0.00000 0.00000
0.58905 0.01028 0.76892 0.63938 0.00000 0.00004 0.00002 0.00027 0.00312
1.37445 0.02399 0.98144 0.19129 0.00006 0.00019 0.00009 0.00880 0.00928
2.15984  0.03769 0.87421 -0.48564 0.00006 0.00002 0.00005 0.00366 0.00560
2.94524  0.05138 0.71393 -0.70023 0.00001 0.00002 0.00001 0.00040 0.00091
3.73064  0.06507 0.76892 -0.63938 0.00000 0.00004 0.00002 0.00027 0.00312
4.51604 0.07874 0.98144  -0.19129 0.00006 0.00019 0.00009 0.00880 0.00928
5.30144  0.09240 0.87421 0.48564 0.00006 0.00002 0.00005 0.00366 0.00560
6.28319 0.10944 0.70710 0.70712 0.00001 0.00002 0.00001 0.00000 0.00000

For any function F presented in Table 1:

8(F) = |F - Fel

where F and Fe are the computed and exact values of F respectively.




TABLE 2

Splining Results for Cardioid p = a(l-cosd) [a = 1.0]
Using 33 Points

® o dx/dg dy/de 5(dx/de) 5(dy/de) 8[(dx/de)? + 2 8(2)
(dy/d2)?]
0.00000  0.00000  1.00000  0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
0.58905  0.16853  0.63389  0.77532  0.00050 0.00231 0.00147 0.17227 0.00016
1.37445  0.80491 -0.47139  0.88197  0.00000 0.00005 0.00004 0.90798 0.00003
2.15984  1.55557 -0.99518 -0.09800  0.00000 0.00002 0.00000 2.11443 0.00001
2.94524  1.98079  -0.29028 -0.95693  0.00000 0.00001 0.00001 3.60793 0.00000
3.73064  1.83147  0.77301 -0.63438  0.00000 0.00002 0.00001 5.16113 0.00000
4.51604  1.19509  0.88192  0.47142  0.00001 0.00003 0.00001 6.53757 0.00000
5.30144  0.44443  -0.09797  0.99543  0.00004 0.00024 0.00024 7.52766 0.00000
6.28319  0.00000 ~-1.00000  0.00000 0.00000 0.00000 0.00000 8.00000 0.00000

For any function F presented in Table 2:
8(F) = |F - Fel
where F and Fe are the computed and exact values of F respectively.

and

12-2 |
6(2) = 2 € for 250
e

where £ and Ee are the compdted and exact values of £ respectively.

H Formula (22) clearly develops a piecewise representa-
tion of the function of two variables that gives con-
tinuity of the function and its partial derivatives
at each point of the domain, including the boundary

points of each rectangle.

+
1,5 o1 %01 * %1, 45+1 o2 m
Zi+1,; Ho1 o2 * 241,341 o2 Co2

dz dz

0o |y o B #2251 o0 Hep ) Ax, 6
dz "1,j 11 ak Ti,gt 12 i ol Assessment of the accuracy in presenting a function
of two variables was performed using an ellipsoid:
dz dz
# (5= |, L Ho o+ = . s H., ) &x. G 2 2 0.5
d + +1,j+1 1 X
x itl,j 11 dx 'it+1,j+1 2 j 02 z=c (1 - 5 - %?) (23)
+ ( %E . . G11 + %E |_+1 . 612 ) Ay. HOl Results of this comparison (Table 3) show excellent
y o1 y 1T = correlation between the function z = z(xi,y.) and the
p A : dz dz J
partial derivatives iz and a;.
dz dz
+ (= + =
Cay li,5+1 %11 % Gy lien, 541 12 ) &5 Hyp
Geometrical Surfaces
(22) An arbitrary geometrical surface, defined as a set of
- vy, points xi,j’ yi,j’ zi,j (i=1,...,n;j=1,...,m), can
where: A= Zz—l H=3 be formed by two intersecting systems of curves
] ¥y which lay on the surface. These two systems of
d d curves, formed by applying the splining technique to
The values of the derivatives EE and EE at each each system, do not have to be orthogonal. Let £ be
. 2 Y . the length along the first set of curves formed by
nodal point can be computed by successive applica- the points x 2 (i=i n:j = constant)
tion of the splining technique, for the function of P 1331 yi,j’ i,j reeali] 2
one variable, along lines defined by x = x. and and s be the length along the second set of curves
y=v.. t formed by the points x. ., y. ., z. . (i= constant,
J 1,] 1,] 1,]

j=1,...,m). As a result of computing the splines



TABLE 3

Splining Results for for a Function of Two Variables

1

2 2
z=c (1 - gi & %i)ﬁ

49 x 49 Points

X y z dz/dx dz/dy 8(dz/dx) §(dz/dy)
-3.0000 -1.8000 0.5568 1.3470 1.4368 0.0000 0.0000
-1.3200 -1.8000 1.4575 0.2264 0.5489 0.0000 0.0000

0.4800 -1.8000 1.5819 -0.0759 0.5057 0.0000 0.0000
2.2800 -1.8000 1.1227 -0.5077 0.7126 0.0000 0.0000
-3.0000 -0.0720 1.3220 0.5673 0.0242 0.0000 0.0000
-1.3200 -0.0720 1.8874 0.1748 0.0170 0.0000 0.0000
0.4800 -0.0720 1.9850 -0.0605 0.0161 0.0000 0.0000
2.2800 -0.0720 1.6426 =0.3470 0.0195 0.0000 0.0000
-3.0000 1.6560 0.7288 1.0291 -1.0098 0.0000 0.0000
-1.3200 1.6560 1.5315 0.2155 -0.4806 0.0000 0.0000
0.4800 1.6560 1.6503 -0.0727 =-0.4460 0.0000 0.0000
2.2800 1.6560 1.2172 -0.4683 =0.6047 0.0000 0.0000

For any function F presented in Table 3:
6(F) = |F - Fel

where F and Fe are the computed and exact values of F respectively.

along these systems of curves one obtains a set of

values £. . and s. . (i=1l,...,n;j=1,...,m). Now
i,j i,j ( s y3J=1, ’ ’

the coordinates x,y,z of an arbitrary quadrilateral

on the surface, (xivj’ yi,j’ zi,j)’ (xi+1,j’ yi+1,j’
(

Xiat, 591 Tikr, 410 Bl g4 o090 (xi,j+1’

), can be expressed using the splining

“ie1,5)
1,541 %,
technique. The formula for an X coordinate, express-
ed in this way is the following:
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The formulae for y and z are similar.

The H and G coefficients are defined by equations
similar to (3), yet are now distinguished by usage
of the independent parameters A and P which may vary
from 0 to 1.
Values of AL As Q§| Qél
i,j7°771+1,5+1 df2'i,j’’’ds i+l,j+1
were determined during computation of the i and j
splines.

and

Since (23) presents the surface passing through
curves formed by the system of splines, this surface
is continuous at every point. However, due to the
fact that Af and As depend on a system of two indices
(when dealing with a function of two variables Ax
changes only with i, and Ay only with j, thus assur-
ing continuity of the partial derivatives by x and y
on the entire element boundaries) on the boundary of
the quadrilateral the partial derivatives:

i, i,j i,j i,j i,j i,j
- T T S S S AU S g Ay dztt dxY gyttt g 42
dg "i+1,j 11 de "i+1,j+1 12 i+l,j 02 de de de ds ds ds
are continuous (in both the i and j directions) only
at the nodal points. At all other points on the
+ ( dx | G + dx G ) As H boundary the partial derivatives are discontinuious
ds 'i,j 11 T ds 'i+1,j "12 i,j o1 y P e e o
1,] 1,] 1,)
in one direction, i.e gz » BY and g are
tr v 18 qg T T
dx dx
+ (==1. . G + = . . G ) As. . H i,j i,j
+ +1,j+1 "1 + ’ J
G5 "Bl T1E a8 CEHLj 2 1,j+1 02 continuous along the i splines and %% 5 g% and

(24)

dzird

s are continuous along the j splines. Evidently,



all respective partial derivatives are continuous at
all interior points of a quadrilateral.

Assessment of the accuracy of representing a geo-
metrical surface was evaluated using a two axis
ellipsoid:
2 2 2
X y z
= + + 55 =
a2 b2 b2 1

In order to produce this evaluation, the systems of

i and j lines were accepted as splines passing through

the points of intersection of the parallels and meri-
donals of the ellipsoid. Results of this comparison
show a high accuracy in presenting the coordinates

yet a slightly decreased accuracy in the presentation

of the partial derivatives (Table 4). The larger
inaccuracies in predicting the partial derivatives,
in comparison with those when dealing with the func-
tion of two variables, can be associated with the
discontinuity along the boundaries.

Use of equations (24) yields the possibility of
interpolation for the third coordinate if the other
two are given. For example, consider that X and

y, are specified and that z, must be found. First,

one must identify all elements whose projections on
plane X0Y comprise the point X,» ¥, as an inside

point. The criteria for determining whether this
point X Y, is an interior point of a quadrilateral

is the equality of the viewing angle (a) to 2n
(Figure 1). For an outside point o must be equal to
zero. The following formula is used to compute d:

(x-x )dy - (y-y )dx

0=§ S (25)
¢ Gx)ZF (yy)
1
1,5+1)
=1,u=0) i+1,+1)
A=taty (A=1,H4=1)
i =CONSTANT
j H
b} da o » Yo )
j=CONSTANT
j s
i=1 I I
i -1 iL i+1
isj) i+1,j)

A =0,4=0) (A=0,H1=1)

Fig. 1 The element on stream surface

where: c; is the counter of the quadrilateral

element.

Proof of this formula for o can be obtained through
introduction of the polar coordinate system:

X=X = R cosa
o .
vy, = R sina

Once all elements which contain x , y are ident-
ified, one has to find the proper values of A and

M for each designated element. This operation
involves the solution of two sixth order equationms.
This solution can be found by the method of itera-
tions using linearized equations for each iteration.
A detailed description of this solution exceeds the
scope of the present paper.

4.0 NUMERICAL METHOD OF STREAMLINE CALCULATION IN
3-D SPACE FOR A SPECIFIED VELOCITY FIELD

As previously mentioned the streamline computation
is based on the Gokhman-Goldstein method [2].

Let £ be length along the streamline and V be
velocity, then the differential equation of a
streamline in three-dimensional space in vector form
is

Vt+dd (26)
where

> & g ; .
d¢ = d27 (T is the unit vector tangential to
streamline)

But in scalar form

V=Vi+Vi+Vk
X y z

2 P »
dg = dxi + dyj + dzk

Therefore, the equation (26) gives

dx _dy _dz _ dg

v vV "V v (271
y z

X

where
1
V= (V2 + V2 +y2)*
b4 vy z

The equations (27) can be solved by different
numerical methods providing that the velocity
field at each point is known.

The reason for accepting the Gokhman-Goldstein
method is that it yields a very accurate solution
with relatively small computational time involved.

The unknown values x, y, and z which are Cartesian
coordinates of points along the streamline being
calculated, can be presented as functions of length
£ along the streamline by:

x = x(2)
y = y(2) (28)
z = z(2)

Now the equations (27) can be rewritten as a system
of three ordinary differential equations of the
first order:



TABLE 4
Application of Splining Technique to Ellipsoid Surface

x2 y%  z%2 _
i + ) + = 1

(Element with Indices i = 6,j = 7)

A M X vy z 8(z) dz/dx dz/dy 6(dz/dx) &8(dz/dy)
0.00000 0.60000 1.15176 -1.74084 1.15176 0.00001 -0.99998 0.67172 0.00002 0.00005
0.10000 0.40000 1.12640 -1.78229 1.14867 0.00001 -0.98036 0.68957 0.00025 0.00004
0.20000 0.60000 1.12890 -1.74084 1.17417 0.00002 -0.96156 0.65909 0.00011 0.00015
0.30000 0.30000 1.09662 -1.80290 1.16308 0.00003 -0.94246 0.68896 0.00039 0.00002
0.40000 0.70000 1.11229 -1.72002 1.20332 0.00004 -0.92450 0.63550 0.00013 0.00020
0.50000 0.10000 1.05946 -1.84390 1.16894 0.00004 -0.90635 0.70074 0.00001 0.00032
0.60000 0.00000 1.04084 -1.86429 1.17130 0.00000 -0.88863 0.70673 0.00001 0.00067
0.70000 0.50000 1.06340 -1.76160 1.22064 0.00001 -0.87127 0.64169 0.00008 0.00028
0.80000 0.20000 1.03135 -1.82344 1.20771 0.00001 -0.85443 0.67121 0.00046 0.00018
0.90000 0.90000 1.06427 -1.67817 1.27109 0.00001 -0.83711 0.58665 0.00018 0.00013
1.00000 1.00000 1.05765 -1.65714 1.28875 0.00000 -0.82068 0.57146 0.00000 0.00003

For any function F presented in Table 4:
8(F) = IF - F_|
where F and Fe are the computed and exact values of F respectively.
and
lz-z_|

e
D
e

6(z) =

where z and z_ are the computed and exact values of z respectively

De is the maximum diameter of the element.

v where;
dx _ x N is the highest order derivative being consid-
e v ) ered, and
Y 2 is equal to zero at the point x = x y=y
A (29) z =z o’ o’
de v o
v Let us accept the value AL for the streamline comp-
dz _ 'z utation of the segment [0<2<AL]. Streamline compu-
dg ~ v tation is then conducted by the method of interations.
If the initial point of the streamline has coordin- For a first iteration of the streamline on segment
ates x , A and z , the functions x = x(2), vy = y(2) (0<2<AL) onlythe first derivatives in (30) are used
° ° i since they are known a priori. So for the first
and z = z(2) can be expressed by means of Taylor's a .
. interation:
series:
) dx
. - dx
_ dy gt x' = xtag 1o 2
X = Xo+ z (i) Io il
i=1 d2 ’ dy
1 -
. . EANRE AT lo £
N d(1) ot
y = yo+ - (i) lo ir - (30) dz
. ! - dz
i=1 de = zo+d2 |o 2
_ Nog@), 4l
Z = zi* 2 (1) |o il
i=1 42 ’



The values of the higher order derivatives at the

int 2 (dle d21| dzzI SN) z
PoInty %52¥01% Tag2lo’ dg?lo’ a2%lo’ 1 0 M) o
are unknown and have to be determined. In order to
determine these higher order derivatives the segment
(0<2<AL) is divided into N-1 segments by these values
of £

2 =

AL
k ~ N-

Tk (1<k<N~-1)

Now the values of x, y and z are calculated by (30)
at the points 2i and after that the values of Vx’ v,

Vz and V are also calculated at the points Ri (the
values of Vx, Vy and Vz can be calculated when
values of x, y and z are known, as stated above).

dx dy

d dz ;
The values of 30 ° 3¢ °® gg can be also introduced

using Taylor's series by differentiation of formulae
(30).

ax _dx 3 aBx el
de de ‘o i=2 dl(i) o (i-1)!
N (i) i-1
%:g—%|+z d—z|%_—1)' (31)
° s d2(1) o (i !
dz _dz | 5 a%a gt
dg ~ d2 ‘o i=2 dl(i) o (i-1)!

dx dy . dz
On the other hand, the values of 32’ de and 3z are

defined by values of Vx, Vy, Vz and V (see formulae

(29)).

Therefore, one obtaines three independent systems of
linear algebraic equations for determination of the
first iteration

)

2
for the higher order derivatives ( %Eélo”” 9_(ﬁ§|0)
de )

at the point X Yoo Zo-

. i-1
ga a1 aBh T
de 'k de o 1=2 dQ(l) o (i-1)!

i-1

N (i) gt
tdle =3 * 2 5. o ¢

Oi=2d2101 H

. i-1
(dz, _dz L a2 Tk
dg'k d2'o i=2 dﬂ(i) o (i-1)!

(k =1, 2, ..., N=2, N-1)

After determining of the first iteration for the
d(N)z]
b
dﬂ(N) o
the second iteration of the coordinates (x, y, z)

for the values 2k is calculated by formulae (30) and

- teration fop 9% dy . dz
after this the second iteration for 32’ ae and i

2
higher order derivatives ( gfélo .

' segment (0<2<L) the last point of the segment x

for the same values £ is calculated and so on,
until iterations converge.

Convergence of these iterations was mathematically
proven for a class of functions Vx = Vx(x, vy, 2z),
Vy = Vy(x, y, z) and Vz = Vz(x, y, z) satisfiying
the Lipschitz condition [2] so this method can be
safely applied to a wide class of problems con-
sidered in fluid mechanics.

After determination of the streamline geometry for -

N-1’°
Yy-10 ZN-1 IS accepted as the initial point for the

calculations of the second streamline segment with
same length AL, until the streamline passes through-
out the desired area of domain.

The accuracy of computations was evaluated by means
of comparison with the theoretical solution for
uniform flow passing around a circular cylinder.

The theoretical solution for flow around a circular
cylinder is easily obtainable by usage of complex
variable analysis. The complex potential for uni-
form flow (with velocity U) around dipole M is

1

W= 2
V4

HI=

+ Uz (33)

Using (33) it is possible to obtain [3] the equa-
tion for a streamline passing (of flow around a
cylinder) through the point X Yo from the equa-
tion:

TABLE 5

Streamline Calculations Using
Gokhman-Goldstein Method

X y 6(y)
-3.0000 0.2000 0.0000
-2.0008 0.2360 0.0000
-1.5552 0.2960 0.0001
-1.1158 0.5218 0.0012
-0.7381 0.8488 0.0006
-0.2872 1.0581 0.0001

0.2089 1.0746 0.0000
0.6714 0.8932 0.0004
1.0564 0.5756 0.0013
1.4778 0.3164 0.0002
2.9699 0.2005 0.0000
6.4698 0.1822 0.0000

ly-y_I

§(y) = -

a

Where y and y, are the computed and

exact values respectively,
a is the radius of the cylinder
(a = 1.0)



32

b, = Uy(l-;g;;i) (34)
where 42
b, = UYO(I';E;§7——)

o] o

a is a radius of cylinder.

The results of streamline calculation using the
Gokhman-Goldstein method, as compared with exact
analytical results, show a very high accuracy
(Table 5).

5.0 COMPUTATION OF ORTHOGONAL CURVILINEAR COORDIN-
ATE SYSTEM BASED ON STREAMLINES

5.1 Generation of the Continuous Velocity Field
in the Auxilliary Non-Orthogonal Curvilinear
Coordinate System

Given the geometry of the surface as the set of
points:

xi,j’ yi,j’ zi,j (i=1,...,n;j=1,...,m) (35)

and the velocity distribution:

v , V , V (i=1,...,n;j=1,...,m) (36)

the results presented in Section 1.2 are applied by
passing two systems of splines through the points
describing the surface. This results in an
auxilliary coordinate system p,q. In this coordin-
ate system the lines p = constant represent j splines
and lines q = constant represent i splines (see
Section 1.2). The value of p is defined to be equal
to length along one of the i splines and q equal to
length along one of the j splines. Analytical ex-
pressions for p and q using A and p:

p(A,p)

q(A,p)

P
37

q
can be achieved using (22) as explained in 3.1.

As the next step in this method, projections (VP and

V ) of the velocity vector (6), along lines p and g,
afle calculated at each nodal point. The formulae for
V_ and V_ can be obtained in the following way.

Components of 3 along p and q at a point i,j are (in
the following formulae, (37)-(42) the indices i and j
are omitted for clarity of presentation):

Gp =V, 8, (38)
where & = e Xy dz ¢

Gq =V, 8y (39)
where e = g Wi+ En

Values of the derivatives in (37) and (38) were de-
termined while generating the coordinate system p,q.
Next, it is evident that:

’

> > >
V=V +V
P q
or using (37) and (38)
Pov 9%,y dx, dy ,y dyye
VO, @t Veadi+ O, gg * ¥y 351
(40)
dz dz
therefore;
Jy 9,y dx
Vg = Vp az * Vq ds
(41)
vo=y W,y I
y p d¢ q ds
and finally:
dy _y &
vV = vx ds Vz ds
P D
dx _, dy
v - yar Yxas
q D
where: D = gx dy _ dy dx

de ds ~ dg ds

Of course, instead of Vx and V projections,
i,j i,j
one can use Vx and V These computations
i,j i,j .
will be equivalent since vector V is tangential to
the plane formed by ép and éq. Therefore, in the

case where one of the velocity components is zero,
the remaining two must be used in (41). Now, having
the values V and V one can present (using

i,j i,j

the results of Section (3.1)) the velocity compon-

ents, Vp and Vq’ along the surface, as continuous

differentiable functions of two variables (see
Formula (22)):

\Y

v
p P(P,Q)

v v

& q(p,q)
Therefore, the values V_ and V_ can be calculated
for any pair of p and q?

5.2 Computation of Streamlines and Perpendiculars

At this point one can calculate the streamlines
using the method presented in Section 4.0. Stream-
lines are now calculated in the p,q coordinate
system. A solution for each streamline was sought
in the following form:

P =p2)

a(2)

(42)

q

where 23 is length along the streamline.

Values of %%— and g%—, which are necessary for

. ] ’
streamline cglculatlons, are computed using the
following formula:



dp _ p_
de HV
s P
(43)
\%
dq__ gq_ v
de H c
s q =
Formulae (42) follow from the definition of the
streamline (See Figure 2)
streamline
a8+ v
where: di = depép + quqéq (the differential Hqdq
element along streamline) ‘
5
V=Veée +Veé (velocity vector Hpd
% ¥ Vatq ¢ = ) pap

After computation of the streamlines, the new
orthogonal curvilinear coordinate system is devised
where the streamlines are accepted as P, coordinate

Fig. 2 Streamline on stream surface

TABLE 6

Results of Computation of Streamlines

Xs Vs Zg <S(ys’zs) Vs 5(vs)
=0.3943 0.4226 0.8161 0.0000 1.3784 0.0001
=0.2669 0.4431 0.8558 0.0017 1.4456 0.0000
-0.1199 0.4564 0.8817 0.0021 1.4892 0.0001

0.0299 0.4595 0.8877 0.0022 1.4993 0.0000
0.1790 0.4523 0.8737 0.0022 1.4578 0.0000
0.3241 0.4350 0.8401 0.0007 1.4191 0.0000
0.4619 0.4079 0.7876 0.0007 1.3305 0.0001
-0.3943 0.1226 0.9108 0.0000 1.3785 0.0000
-0.2670 0.1286 0.9551 0.0000 1.4455 0.0000
-0.1200 0.1325 0.9839 0.0001 1.4892 0.0000
0.0297 0.1334 0.9906 0.0002 1.4993 0.0000
0.1788 0.1313 0.9751 0.0001 1.4758 0.0000
0.3238 0.1262 0.9377 0.0000 1.4192 0.0000
0.4616 0.1184 0.8792 0.0000 1.3307 0.0000
0.5889 0.1078 0.8010 0.0002 1.2122 0.0000
0.7031 0.0949 0.7047 0.0001 1.0667 0.0002
0.8014 0.0797 0.5927 0.0018 0.8979 0.0007
G(VS) = |VS - Vs | /U

e

Where VS and VS are the computed and exact values respectively
e
U is velocity of uniform flow in infinity (U = 1.0).

by, = ysel + Iz = zsel
G(YS,ZS) = D

Where Vs and z_ are calculated values and Ve and z_ are exact values respectively
e e
De is the diameter of element.




lines. Length along one of the streamlines is
equated to the value of p, at each point, and this

streamline is divided into an accepted number of seg-
ments (not necessarily of equal length). Perpendic-
ulars to the streamlines are passed through these
segment division points and the system of q, lines

result. The value of 9, is assigned to the value of

length along one of the perpendiculars. These per-
pendiculars are calculated using the same method as
that used for the streamlines employing an auxilliary

velocity field V", which is perpendicular to the given

field V (a suggestion made by an authors' colleague
Mr. Gary Franke). At the conclusion of this process,
intersections between the coordinate lines P, and q,

(nodal points), are found and subsequently, values of

Lamme coefficients (H and H ) and the derivatives

o o

( =— and —a— ) are determined for the new coordinate
o 0

system. Also, the primary cartesian coordinates x,y

and z for each nodal point are computed.

Accuracy of the solution was assessed by comparison

with flow around a sphere [3] when flow in infinity

is directed along the x-axis. Velocity components

for this flow are computed using the following Fig. 3 The i and j lines system of

formulae: streamline computation for
the flow around a sphere

TABLE 7

Parameters In Orthogonal Curvilinear Coordinate System

P, a, X y z \% HP Hq dV/de dV/dqo
0o )

« 13111 .80349 -.35244 .43026 .83107 1.40373 1.00000 1.00000 .51136 -.00060
.16648 .83851 -.30997 .43710 .84431 1.42612 1.00000 1.01576 .46978 -.00085
.20177 .87355 -.26688 .44307 .85584 1.44557 1.00000 1.02973 .39877 -.00044
.23702 .90858 -.22325 .44812 .86565 1.46205 1.00000 1.04127 .33030 .00069
.27225 .94362 -.17914 .45226 .87371 1.47575 1.00000 1.05027 .29124 -.00109
.22830 .73147 -.35249 .32853 .87625 1.40369 1.00069 1.00000 .51077 .00011
.26149 .76526 -.30996 .33378 .89023 1.42606 1.00069 1.01582 .46957 .00005
.29475 .79898 -.26687 .33833 .90239 1.44554 1.00069 1.02965 .40096 .00010
.32808 .83271 ~.22323 .34221 .91272 1.46212 1.00069 1.04134 .33004 .00032
.36147 .86643 -.17916 .34540 .92119 1.47567 1.00069 1.05101 .28651 -.00004
.31668 .65929 -.35244 .22668 .90797 1.40373 1.00027 1.00000 .51087 .00042
.34871 .69204 -.30995 .23031 .92244 1.42611 1.00027 1.01601 .46951 .00043
.38087 .72480 -.26684 .23345 .93504 1.44558 1.00027 1.02984 .40034 .00029
.41313 .75755 -.22321 .23613 .94574 1.45213 1.00027 1.04162 .33014 .00007
.44548 .79027 -.17916 .23832 .95452 1.47572 1.00027 1.05147 .28772 .00047
.39907 .58630 -.35244 . 12486 .92747 1.40375 .99987 1.00000 .51075 .00004
.43060 .61831 -.30996 .12685 .94225 1.42612 .99987 1.01615 .46936 -.00004
.46225 .65036 -.26687 .12858 .95512 1.44559 .99987 1.03010 .40040 -.00003
.49400 .68246 -.22322 .13006 .96605 1.46215 .99987 1.04182 .33026 .00017
.52583 . 71455 -.17914 .13127 .97503 1.47574 .99987 1.05131 .28768 -.00002

The exact values are:
dV/dqo =0.0

H =1.0

P,




2 2 . 2
U1+ yc +z > 2x )

Ve = 2R
v = -1.52sz (44)
y R
vV = -1.5 Uxz
z R?
where: U is the velocity of uniform flow at
infinity

2
R is the radius of the shpere

Evidently, the streamlines of this flow are
meridionals formed by planes passing through axis OX.
The system of i and j lines was accepted as circles
obtained through intersection of the sphere with two
sets of planes perpendicular to plane XOY (see Figure
3). Results of the comparison of streamline compu-
tation for the case of 49 intersection planes in each
direction is presented in Table 6. As seen from this
table, the computations performed by the proposed
method yield excellent accuracy. Table 7 shows
results for computation of parameters in the final
orthogonal curvilinear coordinate system P sq,-
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