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Abstract

This paper presents the software package developed at Fluid and Power Re-
search Institute (FPRI) for the uid mechanical design of the wicket gates and
the runner blades of the Potential Flow turbine [1]. This software package is
based on the correct formulation of the design problem. The design problem
can not be correctly formulated for Francis and Kaplan turbines with conven-
tional wicket gates, since in these turbines the ow coming to the runner is
neither axisymmetric nor potential. The package is based on a quasi-three-
dimensional approach. All programs in the package are highly accurate from
the computational point of view. The application of FPRI uid mechanical
software directly leads to the best solution from the point of view of e�ciency
and cavitation. The experimental data support the predictions made by the
FPRI software [2,3].

Introduction

There are three very important considerations necessary for the success of the
uid mechanical design of the turbine:

(i) Correct formulation of the design problem, the problem of the uid me-
chanical design of the runner blades for given ow at the entrance.

(ii) Use of the approach to the design problem which directly leads to the op-
timal solution from the point of view of e�ciency and cavitation for the given
initial design parameters.

(iii) High accuracy of numerical computations included in the software package
used for the solution of the problem.
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Let us analyze, from the point of view of these considerations, the software
being used by major turbine manufactures for the the uid mechanical design
of Francis and Kaplan turbines :

(i) In Francis and Kaplan turbines with cylindrical radial wicket gates, varia-
tion of the whirl, (VuR)i, along the span of the wicket gate generates a vortex
wake leaving the trailing edge of each gate along streamlines of absolute ow
[4]. Due to these vortex wakes the ow at the entrance to the runner is not
axisymmetric and, therefore, the design problem is ambiguous. Indeed, the rel-
ative ow at the entrance to the runner in this case is unsteady and presents
a problem. It is not clear for which position of the runner with respect to the
wicket gates the runner blade has to be designed.

(ii) There are two completely di�erent approaches to the design problem. The
�rst is based on the method of singularities directly leading to the optimal
design from the point of view of e�ciency and cavitation for given values of
turbine head, Ht, ow rate, Q, rotational speed, N , and velocity distribution
at the entrance to the runner [2]. The second approach is based on the de-
termination of the ow in the runner with speci�ed geometry of the blades
for given values of H and N . In order to achieve the required value of Q the
variation of geometry is used. It is clear that, since the initial geometry of
the blades was not accepted from uid mechanical considerations, the second
approach does not lead to the optimal solution. The major turbine manu-
facturers use the second approach for the design of both Kaplan and Francis
runners (the �rst approach has been used by Voith for Kaplan design), and
this geometrical approach limits their capabilities to design the most e�cient
equipment.

(iii) The mathematical accuracy of the solution based on �nite elements some-
times could be very low. For example, the application of well known �nite
element program ANTONY to such a relatively simple problem of determina-
tion of the axisymmetric ow in the turbine leads to high errors in velocity
computation. Even larger errors in velocity and pressure were obtained us-
ing a �nite element technique program (developed by Dr. C. Taylor et al.)
for the solution of Navier-Stokes equations in application to a problem of the
fully developed viscous ow in a pipe at high Reynolds numbers [5]. Generally
speaking, a majority of the papers written on application of the numerical
methods to the ow analysis in the turbine directly compare experiment with
the numerical results without any assessment of accuracy of the numerical so-
lution by mathematical means. The experiment can only verify the physical
model in the case of accurate numerical solution. The accuracy of numerical
solution must be veri�ed by the mathematical methods.

In contrast, as demonstrated herein, the software developed at FPRI for uid
mechanical design of the Potential Flow turbine has the following advantages:
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(i) It is based on correct formulation of the design problem.

(ii) It directly leads to the optimal solution.

(iii) It consists of highly accurate programs from the computational point of
view. The accuracy of the programs has been checked by mathematical means.

Software Package for Fluid Mechanical Design

In the case of the Potential Flow turbine [1] a correct formulation of the design
problem can be done easily since in this turbine the ow at the entrance to
the runner is axisymmetric and, therefore, the relative ow at the entrance to
the runner is steady and also axisymmetric.

The design problem for the Potential Flow turbine is to �nd the following, for
given values of turbine head, H, ow rate, Q, and rotational speed, N :

(i) The geometrical shape of the wicket gate providing a ow at the entrance
to the runner with constant value of the whirl, (VuR)i.

(ii) The geometrical shape of the runner blade providing given values H and
Q at the speci�ed N for the ow delivered to the runner trough the wicket
gates.

The value of (VuR)i is accepted to be equal to the change of the whirl between
the entrance to the runner and it's exit, �(VuR), and, therefore, the whirl at
the runner exit to be equal to zero, (VuR)e = (VuR)i � �(VuR) = 0. The
change of the whirl is de�ned by Euler equation:

�(VuR) =
g�H

!
(1)

where:

g is acceleration due to gravity.
� is the e�ciency of the turbine.
! = �N=30 is the angular velocity of turbine.

The Software Package for Fluid Mechanical Design of the Potential Flow tur-
bine is based on quasi-three-dimensional approach. According to this approach
the stream surfaces of the axisymmetric ow are determined and the cascades
of pro�les of the wicket gates and of the runner blades are designed in the
laminae of variable thickness formed by adjacent stream surfaces of the ax-
isymmetric ow. According to this approach the ow in each axisymmetric
curvilinear lamina of variable thickness is assumed to be independent from the
ow in other laminae. This assumption was theoretically justi�ed for design of
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axial-ow runners by L. Simonov in 1941 [6], and supported by experimental
data [2, 3]. The assumption was also theoretically justi�ed for mixed-ow run-
ners at FPRI in 1992 within the scope of contract with EPRI (to be published
in 1996).

The computation of the axisymmetric ow is produced by the highly accurate
program AXIFLOG based on �nite element technique. The program AXI-
FLOG is described in the following section.

The Potential Flow wicket gates can not be designed using the method of
singularities, because their geometrical shape must satisfy two geometrical
constraints in order to have the capability to close the turbine water passages.
The entrance edge of the Potential Flow wicket gate must be formed as a
cylindrical surface parallel to the turbine axis and the trailing edge must pass
through a straight segment also parallel to the turbine axis [1]. The wicket
gate is designed in two steps. In the beginning it is designed using approxi-
mate assumption, that the angle, �, of the wicket gate pro�le trailing element
with circumferential direction can be computed along the wicket gate span by
following formula:

� = arctan

"
(VrR)i
(VuR)i

#
(2)

where: (VrR)i was computed by AXIFLOG.

The second step in design of the Potential Flow wicket gate is based on the
application of the subroutine CASFLOW for the analysis of the ow in the cas-
cade with speci�ed geometry using the the method of integral equations (see
the section titled "Subroutine for Computation of the Flow in the Cascade").
The desirable distribution of the whirl along the wicket gate trailing edge,
(VuR)i = �(VuR), is achieved by an iterative process consisting of varying the
angle � with subsequent computation of (VuR)i by subroutine CASFLOW.
The ow around the Potential Flow wicket gate is not optimized from the
point of view of e�ciency and cavitation, as described by the above design
procedure. However, it is easy to see that the optimization of this ow is not
necessary in this case due to two factors. The value of velocity in the ow
passing the radial wicket gates is small and variation in the distribution of
velocity in this ow can not signi�cantly a�ect the turbine e�ciency. There is
no cavitation in the ow passing the wicket gates.

The runner blades are designed by the program INNA-2, generalized for the
case of the turbine with mixed-ow runner (see the section titled "Program
for Design of the Runner Blades"). The program INNA-2 is based on the
method of singularities and allows optimization from the point of view of the
cavitation coe�cient, �, and from point of the pro�le losses. This optimiza-
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tion is based on variation of the solidity of the cascades of the pro�les forming
the blades, the loading of the pro�les (attached vorticity distribution) and the
pro�le thickness distribution.

The software package also includes the programs for determination of the ow
distribution and the loads in the already designed potential ow wicket gates
and the runner blades for o� design conditions. These programs are based on
the application of the subroutine CASFLOW.

Program for Computation of Axisymmetric Flow

The program for computation of axisymmetric ow in the turbine water pas-
sages, AXIFLOG, is based on �nite element technique. The accuracy of com-
putations of this program was signi�cantly improved by using the curvilinear
orthogonal coordinate system to de�ne the geometry of the �nite elements.
This permitted representation of the boundary of the water passages by sides
of �nite elements with a very high degree of accuracy . The accepted curvilin-
ear orthogonal geometry of �nite elements also allowed application of splining
technique to the highly accurate semianalytical computation of Gallerkin inte-
grals. In the �nite element programs like ANTONY, with arbitrary de�nition
of �nite element geometry, the sides of the �nite elements form a boundary of
the polygonal shape. The Gallerkin integrals in these programs are computed
inaccurately using the Gaussian method.

The problem of determination of axisymmetric ow in AXIFLOG is formu-
lated in terms of the Stokes stream function, 	, where:
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!
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@q
= 0 (3)

where:

p and q are curvilinear orthogonal coordinates.
Hp and Hq are Lam�e coe�cients.
R is the radius from the turbine axis.

After determination of 	; velocity components are obtained numerically (us-
ing splining technique) according to the formulae:

Vp = �
1

HqR

@	

@q
, Vq =

1

HpR

@	

@p
(4)

The results of this �nite element procedure were compared to an analytic
solution in a simple situation permitting the latter [7]. The highest relative
error in velocity was < 0:01%. In order to obtain accuracy information in
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practice, we have built internal consistency checks into the program. These
include:

(i) The constancy with respect to q of the di�erence in potential �m from
entrance to exit along along p-axis.

(ii) The constancy with respect to p of the ow rate Qf along along q-axes
from the entrance to the exit .

As has been proven by the numerous practical computations, the maximum
relative deviation of �m from average and the relative error in Qf are < 0:5%.
One of these practical computations was for the Francis turbine at Butt Val-
ley powerplant owned by Paci�c Gas and Electric Company [1]. The plot of
streamlines of axisymmetric ow for Butt Valley Francis as computed by AXI-
FLOG is presented in Figure 1. For complete mathematical description of the
program AXIFLOG see [8].

Figure 1. Streamlines of Axisymmetric Flow for Butt Valley

Francis
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Program for Design of the Runner Blades

The program for design of the runner blades, INNA-2, is the generalization
of the program INNA [2] for the case of the mixed-ow runner. The program
INNA was developed by the author of this paper in 1982{1985, while at Al-
lis Chalmers, for the design of axial-ow runner blades using the method of
singularities. The program INNA-2 is based on the quasi-three-dimensional
approach. This program designs the rotating cascades of pro�les forming the
runner blades. Each cascade is located in the lamina of variable thickness
between two adjacent stream surfaces of the axisymmetric ow. The most
important features of the program INNA-2 are:

(i) The ow in the cascade is mapped onto the straight cascade located in the
at lamina with variation of thickness in the direction perpendicular to the
cascade using the the following formulae for conformal transformation:

� = �R0 (5)

H =
Z `s

0

Rd`s
R0

(6)

(Vc)� =
R

R0

Vu (7)

(Vc)� =
R

R0

Vm (8)

where:

� and H are the Cartesian coordinates in the plane domain (the axis
O� goes along the cascade).

R and � are the cylindrical coordinates for the point along the stream
surface.

`s is the length along a streamline of the stream surface.
R0 is the value of R for the point at a streamline of the stream

surface with `s = 0.
(Vc)� and (Vc)� are absolute velocity components in the plane

domain.

(ii) The method of singularities is used for the design of the pro�les of the
straight cascades on the plane domain O�H [9]. The relative variable thick-
ness of the at layer, h = h(�), was approximated by parabolic function:
h = (1 + ��)2: The analytical formulae for the velocity �elds generated by
single source/sink and vortex for the at parabolic layer were developed by
author of this paper and Dr. Y.V.N. Rao in 1965{1967 [10, 11]. The formu-
lae for velocity �elds generated by singularities (vortices and sources/sinks)
distributed along the line of singularities located inside of each pro�le were
obtained by integration using the formulae for single source/sink and vortex.
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In the cases where the analytical integration was not possible, the highly ac-
curate integration using splining technique was used.

(iii) The geometrical shape of the conformal mapping of pro�le of the straight
cascade and the velocity distribution around it are computed on the domain
O�H. The geometrical shape of the pro�le forming the runner blade and
the velocity distribution around it are obtained by inverse conformal mapping
from the domain of straight cascade onto the domain of cascade rotating in
the lamina between stream surfaces of axisymmetric ow using the formulae
(5){(8).

Subroutine for Computation of the Flow in the Cascade

The subroutine CASFLOW for computation of the ow in the rotating or
stationary cascade located in the lamina of variable thickness between two
adjacent stream surfaces of the axisymmetric ow is based on the method of
integral equations. The most important features of the solution are:

(i) As in the program INNA-2, the ow in the cascade is mapped onto the
straight cascade located in the at lamina with variation of thickness in the
direction perpendicular to the cascade using the formulae (5){(8). The method
of integral equations is applied to this straight cascade. The ow through the
cascade of pro�les located in the lamina between two adjacent stream surfaces
is obtained applying the formulae (5){(8) to the ow in the straight cascade.

(ii) The determination of the ow through the straight cascade is based on
the Douglas Neuman approach [12] to the method of integral equations. The
Douglas Neuman method was generalized for the case when the straight cas-
cade was a result of conformal mapping of the cascade rotating in the lamina
of variable thickness between two adjacent stream surfaces of the axisym-
metric ow and the computational accuracy of this method was signi�cantly
improved. The �rst improvement of accuracy was achieved by considering the
unknown sources/sinks distribution along the pro�le, q = q(`), as the polyg-
onal function with nodal points at the vertices of the segments representing
the pro�le boundary (in Douglas Neuman method q = q(`) was represented
by a step function with a constant value of q along each segment). The second
improvement of accuracy was achieved by improving the formula for velocity
at vertices generated by two adjacent segments by considering one smooth
curvilinear segment instead of two straight segments. The generalization of
the Douglas Neuman method for the case of variable thickness required new
formulae for velocities generated by polygonal distribution of q = q(`) with
unknown values of qi at nodal points. These formulae were obtained by in-
tegration using the same analytical formulae for the velocity �elds generated
by single source/sink and vortex for the the at parabolic layer, as in the
case of the program INNA-2. According to the Douglas Neuman method for
stationary cascade, three linearly independent ows are found: the ow with
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V� = 1 at � =1, the ow with V� = 1 at � = 1, and the ow generated by
 = 1 distributed along all pro�les. The ow in the cascade is a result of linear
combination of these ows satisfying the boundary conditions at � =1. The
generalization of the Douglas Neuman method for rotating cascade required
the fourth linearly independent solution for the ow Vrt satisfying the bound-
ary condition at the pro�les:

(Vrt)n =
!R2

R0

cos� (9)

where: � is the angle between normal to the pro�le and axis O�.

Figure 2. Flow around Butt Valley Runner Blade Pro�le

Computed by INNA-2 and CASFLOW
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The subroutine CASFLOW was veri�ed using the program INNA-2. This
veri�cation showed that the di�erences in computations of velocity distribution
around the pro�les are within 1:0%. Figure 2. presents the ow distributions
computed by INNA-2 and by CASFLOW around Butt Valley runner blade
pro�le designed by INNA-2.
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