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DETERMINATION OF THE AXISYMMETRIC

POTENTTAL FLOW IN THE PASSAGES

OF TURBOMACHINES USING THE

METHOD OF SINGULARITIES

Alexander Gokhman
Senior Staff Engineer

Research and Development Division
Allis-Chalmers Fluid Products Company
York, Pennsylvania

ABSTRACT

This paper presents the application of the method of
singularities to the problem of axisymmetric flow in
fluid passages, and utilizes newly developed
numerical techniques to achieve a highly accurate
solution. In the proposed method the fluid passages
are considered to be infinite at both entrance and
exit. For example, in the case of a Francis turbine,
the fluid passage at the entrance go to infinity
between two planes perpendicular to the turbine axis
and at the exit, go to infinity inside of the cylinder
parallel to the turbine axis. The Y-distribution
along the infinite surfaces of revolution is deter-
mined as a solution of a Fredholm integral equation of
the second kind.

NOMENCLATURE

r, z and O cylindrical coordinates (the positive
direction for z-axis is downstream).

v the flow velocity vector.

V. V_and V, radial, axial and circumferential flow
r, z 6 . X .
velocity projections.

Y the intensity of distributed vorticity
along the surfaces bounding the fluid
passages (Y is positive in clockwise

direction).

Q volume flow rate

b0 the height of the radial inlet/exit,
Fig. 1.

LI and ry the radii of the outer and inner
cylinders of an axial inlet/exit,
Fig. 1.

¢ the velocity potential.

n the unit vector normal to the surfaces
of revolution bounding the fluid pas-
sages (directed towards the inside of
the passages).

2 the length along a meridional line
forming the bounding surface of revolu-
tion.

INTRODUCTION

The method of singularities gave excellent results
when applied to the analysis and synthesis problems
for two-dimensional cascades of hydrofoils [1, 2, 3,
4]. To the best of the author's knowledge, this
method has never been applied to the determination of

the axisymmetric potential flow in the passages of
turbomachines.

In the majority of recent works, the axisymmetric flow
in the fluid passages was determined using streamline
curvature method, finite differences or finite
elements [5, 6, 7, 8]. However, the application of
these methods to this problem can lead to undesirably
high values of relative error in the velocity field
determination. These errors can approach the level

of about 4% [5, 8]. In contrast, the first attempt of
applying the method of singularities (which is de-
scribed in the present paper), to the velocity field
determination in the passages of turbomachines pro-
duced a solution of very high accuracy with a maximum
relative error equal to 0.49.

The proposed solution can be applied only to fluid

passages having the following types of geometrical
boundaries:




1. Radial Inlet/Exit

The passage is formed by two planes perpen@icular
to the axis of symmetry (axis of turbomachine),
and extend to infinity.

2. Axial Inlet/Exit

The passage is formed by an axial agnu}ug along
the axis of symmetry and extend to 1nf}n1ty (the
absence of an inner cylinder is a special case

of this type).

It is clear that the fluid passages undeF con51d§ra—
tion include all practical cases (for ax1symmetr1c-
flow) used in turbomachinery (Fig. 1 shovs a repre
sentative sketch of a Francis hydro-turbine having

this type of passage).

_ 3% (3)

Boundary Conditions

w

At
\Y
#

Radial Inlet/Exit

infinity (r » ®) the flow is unif?rm, radial and
9'0; therefore, the boundary conditions have the

following form:

ro_. )

Z =

-z
o J G
Surface of Revolution
Fig. 1 The sketch of a Francis hydro-turbine
fluid passage
BLEM . )
FORMULATION OF THE PRO i 2= 5
r
r > ®

Assumptions

% Fluid is inviscid and incompress%ble.
*% TFlow is potential and axisymmetric
*%% The circumferential projection of the flow
velocity is zero.

Governing Equation

The flow of fluid satisfying the accepted assumptions
is described by Laplace's Equation [9]:

9% . 19 , 3% _ (1)
522 T ror T ar?

and the velocity projections are expressed using
potential by the following formulae:

V"%

_ 9 (2)
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The plus sign in (4) corresponds to the exit and the
minus corresponds to the inlet.

*% Axial Inlet/Exit

At infinity (z » * ®) the flow is uniform and axial;
therefore, the boundary conditions are:

limV_=0 (6)
r

@)

The plus sign in (6) and (7) corresponds to the inlet
and the minus to the exit.

foctocts
7

w~% The Surfaces of Revolution Which Bound the Fluid
Passages

At each point on these surfaces:
v =0 (8)

or
V- =0

The expression for an inside normal f, in the case of
a meridional line (r = (L), z = z(L)) forming the sur-
face of revolution is given by the following formula:

” dz . d »
n=t a% e, - a% ez) 9)

where the plus sign is for the inner surface and the
minus sign is for the outer surface.

Therefore, the boundary conditions described in (8)
can be rewritten in the form:

dz dr _
Vr T Vz T 0 (10)

THEORY AND METHODOLOGY

In order to generate the potential axisymmetric flow
inside the fluid bpassages, the bounding surfaces of
revolution are covered with distributed circular
vortex filaments of intensity y(2) (£ is the length
along meridional line forming the surface of revolu-
tion).

There are several conditions the y-distribution has
to satisfy. These conditions evidently depend on the
type of turbomachine under consideration. In Francis
and Kaplan hydro-turbines, for example, the radial-
axial fluid passage shown on Figure 1 has to be
considered and y-distribution has to satisfy the
following conditions which are known a priori to the
solution.

o

* Along two radial planes forming the intake:
lim —g(L st (11)

2nb r
()
r > o®

where + is for upstream plane and - is for downstream
plane

St

“~ Along the cylinder forming the discharge:

lim y(z) = - nS > (12)
c

Z > ®

“w% At the point of intersaction of the inner bounding
surface with the axis of turbomachine:
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y=20 (13)

The conditions (11) and (12) are imposed in order to
generate the flow which satisfies the boundary condi-
tions (4), (5), (6) and (7). This immediately follows
from the results obtained for vortices distributed
along two semi-infinite radial planes and for vortices
distributed along the semi-infinite cylinder (see
Appendix 1). The condition (13) follows from the
continuity of the velocity field in the fluid pas-
sages.

For the other type of turbomachine the conditions
similar to (11), (12) and (13) can be easily estab-
lished. It is clear that all practical cases for
these conditions have to be incorporated in the sub-
sequent computer program.

The values of y(£) at all other points of inner and
outer bounding surfaces are unknown and have to be
established as a result of the solution.

Change of Boundary Conditions along the Bounding
Surfaces

It is well known that the boundary condition (8) along
the surfaces bounding the fluid Passages leads to a
Fredholm equation of the first kind which is not suit-
able for the determination of Y-distribution, since

in this case it can produce high inaccuracies and
éven an erroneous solution [1,10]. In order to apply
the Fredholm equation of the second kind to our
problem the boundary condition (8) has to be changed
to the equivalent condition:

I =
vi=o (14)

where V1 is the velocity component tangent to the
bounding surface outside the fluid passages.

The proof of equivalency of the conditions (14) and
(8) follows [10].

Suppose we found a Y-distribution which satisfies
conditions (11), (12) and (14). Let us consider the
domain formed by the bounding surface meridional line
DF and two straight lines (see Figure 1):

r=r (line DE)

M

z =z (line EF)

M

It is easy to show that velocity induced by the
vortices along these lines VM (along DE) and VN (along

EF) satisfies the following conditions:

lim VM =0 (15)
rM—)oo
lim VN =0 (16)
ZN—)(:O

If one takes points A and B (on straight lines
forming the radial part of the intake) and point

C (on a straight line forming the cylindrical part
of discharge), then the vortices distributed between



points A and G, and points B and C cover two iinige .
. ; : a
surfaces of revolution and the velocity VF induce

i i "satisfies the
the point (rc, zc) by these vortices sa

following conditions:

17
lim V, = 0 L2
r > ® (z_ = const)
C Cc
18
lim V, = 0 (18

z - o (r = const)
C €

It also follows from Appendix 1 that ve%ocity’alogg
the lines DE and EF induced by the vortices dlitrlb'
uted along two radial semi-infinite planes (z = Zp)
o Sr<wand z =z, r, £ r < ®) and by semi-
infinite cylinder (r = ot Zp
Therefore, we proved the

< z < ®) goes to zero

when Ty > o and zy > oo,

conditions’ (15) and (16). Now it is clear that

V_ = 0 along the closed contour BDEFCB (along the line
T

FCBD one considers the points outside the fluid pass-
ages).

Let us consider the volume TS bounded by the surface

of revolution AS formed by rotation of contour BDEFCB

around the axis. Since there are no vo;ticesdin51de
volume Ts’ the flow inside Ts is potential and:

(17)

or

(18)

¢S = const
where & 1is the potential along contour BDEFCB.
s
It is easy now to show that there is a stagPation zzne
inside the surface A . Indeed, in application to the
s

volume T , Green's formula [12] gives:
s

ad
JIf (#V20 + Vo-Vd) de = if ¢S 5 dAS (19)
T

s s
where & is the potential inside the volume TS.

On the other hand since there are no sources/s%gks
inside volume T the conservation of mass provides
¢

that:
20
g %an =0 @

AS

Also since ¢ is the velocity potential:

V2o = 0 &0

Now substituting (18), (20) and (21) into (19) one
obtains that:

IJf (Vé-vo) dTS =0 (22)
T

s
and since V¢+V® 2 0 and dTS > 0 it follows from (22)

that at every point of TS:

V-Vd = 0

o =0 (23)

i t a-
The equation (23) proves that volume TS is the stagn

tion zone. Therefore, the normal ?omponent of e ik
velocity at each point along the line FCBD outside 1
water passages is equal to zero and, since thetﬁorma
component is continuous for tbe Yortex sheet, gt i
boundary condition (8) is satisfied. Of course i
clear that the same is true for contour GAH.

It is also easy to see that condition (14) is equiv-
alent to the condition:

(24)
11 -
VI Y

where V11 is the velocity cgmp9nent tan%e?g to the
bounding surface inside the flui
passages

The condition (24) directly follows fFom (14) and
from the fact that for the axisymmetric vortex
sheet [10]:
25)
11 _ yl = (
VI Vt Y

Integral Equation for Determination of y-Distribution

The integral equation for y determination directly
; 1 11
follows from condition (14). If VI and Vt at the

p()lllt X o bo din surface ar ntroduced as:
f un g e 1 3y
( ¢’ z )

vl=v_ - it (26)
Tt 2
)
vit =y s Y 2c 27
T

where V_ is the tangential component of velocity in-
T

duced by all vortex circular filaments y(ﬂ? dis-
tributed along the bounding surface_egclu@1ng
the filaments passing along the infinitesimal
segment containing point RC = Q(rc,zc)

and tangential unit vector at point (rC,zC) is:

& _ g£| 3 §§| a (28)
i) rc’zc r de rC,ZC z

then the integral equation can be written, as:

gz ]

dr
¥y ) =2 [V.(r,z) 35 Vo) gle Lz

Irc’zc
(29)

i i be expressed
The velocity components in (29) can : :
(using formulae (69) and (70) of Appendix 1) as:

- inOrd6d4L
2r y(2) (z -z)sinbr

. (30)
Vr(rc,zc) = { é
S

4n[R(r,z,8)]1"
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( 2n y(ﬂ)(r-rcsinG)rdBdﬂ
vk ,z)=-ff —— ¢ =~ ~ (31)
z ¢’ c

LS 0

47‘([R(r,z,6)]1'5

where
= 2 _ 1 2 = 2
R(r,z,0) 2 2rrc51n6 + 1?2 + (z zc)
and

LS is the contour including two infinite

meridional lines forming the bounding surfaces
of revolution (Figure 1).

The equations (29), (30) and (31) constitute the
Fredholm equation of the second kind, which generally
can be solved only numerically.

NUMERICAL SOLUTION

For the practical numerical solution it was accepted
that y is equal to its asymptotic value along the
semi-infinite lines of boundary.

Therefore for the fluid passages shown in Figure 1:

Along the lines forming the radial intake (+ is for
the line AH, - is for the line BD):

y(r) = + Eﬁ%‘; (ry S <o) (32)
[¢]

Along the line CF forming the axial discharge:

¥@) = - 3
co

(zc £z < ® (33)

It can be shown that the value of normal velocity at
points A, B and C can be made of any desirable small

value by accepting sufficiently large values for r

and zZe-

For the finite parts of the meridional lines (in
Figure 1 lines GA and CB) y-distribution is unknown

and has to be determined using the integral equation
(29).

Each finite part is divided into certain number of
segments and along each i-segment Y is represented
either by a Hermite interpolant polynomial or by a
linear function. In the case of Hermite interpolant
polynomials the entire Y-distribution forms a con-
tinuous function of £ with continuous derivative

g% at each point. In the case of a linear function

the y-distribution forms a polygonal function with g%
constant along each segment and discontinuous at the
end points of the segments.

Polygonal y-Distribution

In this case y is represented along each segment i by
the following formula:

V') =y, (-0 v, A (1S5S N (34)
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where
E—Qi
A= AL [02A<1)
i
By, = £i+1 - 21

The values of y at the end points (yi and y

i+1) 10

If the
solution of the integral equation (29) is sought using

(34) are unknown and have to be determined.

(34), the point r on each segment at which the

value of y is being evaluated has to be inside the

p Z
3’ Tl

segment (since at the end points of segments g% is
discontinuous). The most convenient from a computa-
tional point of view is the point rcj’zc' which is

the midpoint of each segment and in this case the
integral equation (29) is reduced to the system of
N-2 linear algebraic equations with N-2 unknown values
of Yj (for N-1 segments only N-2 values of Y. are un-

known since Y, and Yy are defined by (32) and (33)):

C oy dr dz
05 Chy * Vyu) = Wy g+ Vo ), Lzt
N R o
N-1 1 dr
2 > [vL,, 0, S +
i=1 k=0 r,itk,j’2 de rcj’zcj
dz
(Vz,i+k,j)2 ale Lz Wi
cJ° cJ
(j=1, ..N-2) (35)
where (Vrt)r B and (Vzt)r s are velocity
SR | SRR |

components induced by y distributed along semi-
infinite straight lines (formulae (32) and (33))
at the point (rcj’zcj)'

(Vr,i+k,j)£ and (Vz,i+k,j)£ are the influence
functions of Yitk at the middle point of segment

j (these functions are obtained by integration
in Appendix 2).

The system (35) can be solved by various methods
(Gauss elimination, etc). 1In the present paper this
system is solved by the method of iterations using
the fact that the values of influence functions
(Vr,i+k,j)2 and (Vz,i+k,j)2 are much smaller by
absolute value than 0.5. Therefore, for the first
iteration the following formulae are used:

_ dr dz
Yj,av B (Vrt ag t Ve Ef)r . Z . (36)
€J, ¢
j=1,...N-2
where
Y ay = 0.5 (yj *Y5) (37)

The values of Yj for j=2,...N-1 can be found from (37)

by a simple rearrangement (note that ¥;» is known):



YJ+1 = Yj,av = YJ‘ (J:l) N-z)
For the subsequent iterations the entire formula (35)
is used and the values of Yj obtained by means of pre-

vious iteration are employed in the evaluation of the
right hand side of the formula (35). The iterations
converge very rapidly and provide any desirable
accuracy of the solution of system (35). When values
of y. (j=2,...N-1) are determined the velocity compon-
entsat any point inside the fluid passages can be
computed. For the points located on the boundary the
biggest error of computation occurs evidently at the
end points of the segments j, since these points are

the points of discontinuity for %%.

Smooth y-Distribution

For this case y is represented by a Hermite inter-
polant polynomial [11] along each segment 1i:

L% o dy dy
Y0 = il + ¥y * A% (Gglify * ggliefay)

(38)
= - 2 3
where HlO 1 3A¢ + 2A
— a2 - 3
H20 = 3\ 2\
= X = 2 3
Hll A - 2A%2 + A
— A3 _ )2
H21 A A
z—zi
and A= AL [0 £ A< 1]

i

ught using (38) then there are N

If the solution is 59
additional unknown a%lj (j=1,...N). In order to

determine these additional unknowns one can use the
method of iterations. For the first iteration the
linear formula (34) is applied and the values of Yj

(j=2,...N-1) are determined. Then the splining tech-
nique is applied to y(2) defined by N values of y at

the end points of segments and the values of %%lj
(j=1,...N) are found [11].

For the computation of subsequent iterations the
following equation is used instead of (35):

dr dz

= (Vrt dae * Vzt af)r yZ . *
SN RSN

Y

j,av

N-1 1 dr

z E [(Vr,i+k,j s d2

|
i=1 k=0 2%

rCJ
dz
* (Vz,i+k,j)s aflr .y Z .]Yi+k
SVRSSN |
dr
¥ [(wr,i+k,j)s Eilrcj’zcj
dz dy
(wz,i+k,j)s dglrcj’zcj] d£|i+k
(40)

ryitk, s’ (Va,ivk, s (e iek,j0s 20

. .) are the influence functions of
z,itk,j’s

where QY
W

and LS at the midpoint of

Yit+k gl itk

segment j

When the values of Yj ay 2re calculated (using the
b

values of yj and g%li obtained as a result of the

first iteration) the splines are passed through these
midpoints and two end points of y-distribution.
All subsequent iterations are arranged in the same

manner.

Assessment of Accuracy

The accuracy of the solution with polygonal distribu-
tion was assessed by direct comparison with a theore-
tical solution for the flow passing a sphere located
inside an infinite surface of revolution formed by a
theoretically computed streamline of the translatory
flow around the sphere in unbound space (see Figure
2).

Stream Surface Accepted
as the Boundary

r

~—— ; Y(R)

Sphere

i

Fig. 2 The fluid passage for the translatory
flow around a sphere

The theoretical value for the velocity around
a sphere is calculated by the formula [14]:

R
s

= E
(W), =151 (40)
where U is the velocity of uniform flow in infinity

RS is radius of the sphere

It is accepted for this comparison that U = 1.0 and
Rs = 1.0. The results of the comparison are shown

in Table 1.

The variables in Table 1 are:

AL Length along the meridional circle forming
the sphere
R and Z Cylindrical coordinates of a point on the
meridional circle
VT Velocity computed by the proposed method
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Y(2)
t:}§§§:j;:_
o
= Z

v

VIE

Velocity computed by formula (40)

As is clear from Table 1 the maximum relative

VTE - VT i i
_— VIE = VT 0o ive SR e il ) eérror in computation of the velocity around th
) ] g ocity computa sphere is equal to 0.4%. The Table 1 shows -
TABLE 1
INFINITE UNIFORM FLOW AROUND SPHERE
(COMPARISON WITH THEORETICAL SOLUTION)
AL R Z VT VIE ERV
.01571 .01571 -.99988
. .02348 02356
'8?5;2 '8§;ié -.99889 .07034 y o '888g§
‘ . -.99692 11713 1176 :
.10996 .10973 -.99396 £ b D0
. .16378 16460
.14137 .14090 -.99002 ' 0010
. .21025 .21135
17279 .17193 -.98511 frir
. .25647 25789
.20420 .20279 -.97922 ' gt
. .30243 30418
.23562 .23345 -.97237 ] o
. .34807 35016
.26704 .26387 -.96456 ) oz
. .39338 39580
.29845 .29404 -.95579 4 ' pree
. .43831 44105
.32987 .32392 -.94609 4 g
. 48283 4858
£36128 35347 -.93544 .52689 gt 'gggg?
.39270 .38268 -.92388 .57047 .57402 -00354
\ .22412 41151 -.91140 .61352 .61726 .00374
'42232 '22333 -.89803 65601 65990 -00389
. . -.88377 .69788 70188 '
.51836 49546 -.86863 ' g
; .73911 .74318
.54978 .52250 -.85264 b
. .77965 78373
.58119 .54902 -.83581 8 ) rin
. .81946 82352
61261 .57501 -.81815 : oo
. .85850 .86249
-64403 .60042 -.79968 grioe
, . .89673 90061
67544 62524 -.78043 ' 00373
. .93412 93785
.70686 64945 - 76041 ' pieis
. .97062 .97416
.73827 .67301 -.73963 1 i
. .00619 1.00950
.76969 .69591 -.71813 : s
‘ 1.04080 1.04385
.80111 .71813 -.69591 ) e
. 1.07441 1.07717
.83252 .73963 -.67301 ¥
. 1.10698 1.10943
.86394 .76041 - 64945 7o
. 1.13848 1.14059
.89535 .78043 - 62524 00173
. 1.16888 1.17063
.92677 .79968 - 60042 i
. 1.19813 1.19951
.95819 .81815 -.57501 1 0098
. 122622 1.22720
.98960 .83581 - 54902 "obsa
% 1.25310 1.25369 0
1.02102 .85264 -.52250 1.2 00029
. .27875 1.27894
1.05243 .86863 - 49546 5005
. 1.30313 1.30292
1.08385 .88377 -.46793  pO0EL
. 1.32623 1.32563
1.11527 .89803 - 43994 (e
. 1.34801 1.34702
1.14668 .91140 - 41151 i
. 1.36846 1.36708
1.17810 .92388 -.38268 ) o074
. 1.38754 1.38580
1.20951 .93544 -.35347 o
. 1.40524 1.40314
1.24093 .94609 -.32392 ' o
. 1.42153 1.41910
1.27235 .95579 - 29404 1.4 ' o037
. 43640 1.43366
1.30376 -96456 -.26387 gt
. 1.44983 1.44681
1.33518 .97237 -.23345 ' gl
. 1.46181 1.45853
1.36659 .97922 -.20279 ' et
. 1.47231 1.46881
1.39801 .98511 -.17193 ' "m0l
. 1.48134 1.47764
1.42942 99002 - 14090 ' 00387
. . 1.48888 1.48501
1.46084 99396 -.10973 ' troid
. . 1.49493 1.49092
1.49226 99692 -.07846 ) Soatt
. . 1.49946 1.49535
1.52367 .99889 - 04711 ' s
. 1.50249 1.49831 L0041
1.55509 .99988 -.01571 1.50401 1.49979 .00422
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the comparison only for -1 < Z < 0, since for
0 < Z <1 the errors of the computations are the
same due to symmetry.

CONCLUSION

The application of the method of singularities to the
solution of the axisymmetric problem demonstrated high
accuracy in velocity computation even in the case of

a polygonal y-distribution and a conical approxima-=
tion of the elements forming the boundary. It shows
that this technique can be successfully applied to the
determination of the axisymmetric flow when it is used
as part of the three-dimensional design of the turbo-
machine runner. This three-dimensional design is
based on a superposition of axisymmetric flow in the
fluid passages with the flows produced by the system
of the vortices and sources/sinks associated with the
blades. High accuracy in computation of each com-
ponent becomes very important for the achievement of
acceptable accuracy for the entire solution.
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APPENDIX 1

Velocity Components of the Flow
Tnduced by Circular Vortex Filaments

As shown in [9, 10], the velocity components of the
flow induced by vortex I', forming the single circular
filament (r = r, z = Zo) at the point r = r_, 2 = 2,

can be expressed by:

2n
v ( )] = - rro(zc - Zo) sinBd6
rFer?e s 4t [R(x. ,2 6)]1'5
0 0’70’
(41)
21
Fro (r0 - rcsine)dG
[Vz(rc 2 )]s = T In 1.5
: , [RG,,z,,0)]
(42)
where
= P = 2 2 - 2
R(ro,zo,e) S Zrorcs1n8 toro + (z0 zc)
(43)

Vortex filaments distributed along radial planes.
Using (41) and (42) one can write the formulae for
the velocity components (at the point r =71, 2 = zc),

of the flow induced by the circular vortex filaments,
of intensity y(r) (with mutual center at the point

r = 0), distributed along the part r, {r¥ r, of the
plane z = z, as: :

r, 27
1 ¥(r) (z, - z,)sinbrdrdd
v (r ,z)1 =-—= [
4n 1.5
rc’e iz L, r, 0 [R(r,zo, 0)]
(44)
T2 n y(r)(r - r_sinB®)rdrdd
v, (coz), o =" 7 Ja st
0’72 r 0 [R(r,zo,e)] :

(45)

In other d
words for r, >® and y (r) = yo/r (yo is con-

stant) the velocity components are:

( © 27
Yy (z -2z)

__ to7c o i
[Vr(rc’zc)]zo - 4 ) Slnedrd? 5
, r] 0 [R(r,zo,e)] ’

N (46)
22 s in0)drde
. ~ n - r sin6)dr
W, (rezdly = - S ————
o e o [RGz,01h
N (47)
Changing thelorder of integration in (46) and (47)
and integrating with respect to r one obtains the
following formula:
2n
Y(z_ -z
[Vr(rc’zc)] - __0o"c o) g sinb
z, 4t P(Zo,e)
0
r,-r sin6
X [1 - v———~——£L——————>] de
[RR,,z_,6)]%">
1’ 0’
(48)
where
P(zo,e) = (zC - 20)2 + rgcos26 (49)
¥ 2n
v - _ .o de
[ z(rc’zc)]z 4n I 0.5
o 0 [R(rlzo,e]
(50)
%n order to investigate the asymptotic behavior of
. and VZ when r_ > ® one can apply the binominal
theorem to the function [R(rl,z 6)]_0'5 in formula
o
(48) and (49) (since in thi
g Bl 5 is case rc>> r and rc>>
c o
-0.5_ 1 By 111
[R(rl,zoe)] = ;—[1 + —sinB - 5 ;%— +
¢ e
z - 2 2
(e = 8,0 +3°1 .5 1
Tz g prsintt oG
c c
(51)

r My

r o
¢ 77 2, z,

Substituting (51) into (48) and (50 i i
one obtains that: ) and (50) and rntegrating
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Y
[V (r,2)] = -2 [+yT+aAZ-
& A 1
e ZO 2rC e Or(;z)]

rc>> T
rc>> z, - z,
where
z -z
A= = °
3
(o]

- is for Z > z, (A D> 0)

+ is for z, < z, (A <0)

and

Y
¥ lrozd]l, == 5 1% Oz(_%Z)]

2r
o C c

L r

r -
c 27 z, -z,

(52)

(53)

Now using.(52) and (53) one can write the formulae
for velocity components of the flow induced by the

vortices yo/r distributed along plane z

the vortices - yo/r distributed along plane z

+ H (f
(for £ > x>z -z, r. > z_ -

z, - H):

f
or z < z, < z +H

Y
[V (r ,2)] Y 1
rc’ellz Lz 1 r_ [1+ Orl(ré)]

for z < z o
& o’ r for zC > zO + H

Y

v =9

[ r(rc,zc)]zo’ZO+H =20
c

1
rl(r2 )
c

and for any z
c

¥
\Y - _0 1
(9,002 0]y o 1 =5 O i)
o o c c

It is easy to see from (54) and (55) that

\Y%
[ " (rc,zc)]z 2 4K
lim 079 =4

(54)

(55)

(56)

(57)




(58)
. [Vz(rc,zc)]zo,zo+ﬂ o .
1im
X
r
C
r > 0
C

Also it can be proved that the express%ons (57), (58)
and (59) are valid for any y-distribution of the
following kind:

y(r) = X% [1+ e(r)]

where 1im &(xr) = 0
>0

i i i he cylinder.
tex filaments distributed along t
XZing (41) and (42) one can write the formulae for the

i = of
velocity components (at the point r = ro, z zc),

the flow induced by the circular vortex filamintsé of
intensity y(z) distributed along the part z, £z %z
of the cylinder r = r , as:

) ) jn ¥(2) (2~ 2z)r sindd}do
[7ld 12152, T Thn 2y 0 [R()co,z,e)]l'5
(60)
,/\\\%?;> . 2y, 20 ¥(2)(r - r_sin® )r dzdo
[vi::gro,zl,z2 -7 T i i [R(ro,z,e)]l‘5
1 (61)

Also for y = Y, and z, > ® (or z, > -») after integra-

tion with respect to z (see [10]) the velocity c:ggon-
ents, for the semifini?e cyllnders.(r = ro) cove
with constant vortex rings Y,» are:

3n/2 ) §
: . Yo i r051n8 d 62)
\Y = B 0.5
[ r'r o~ = o2n /2 [R(ro zege)]
n

Ve
\\ 7& ‘6
\‘\

i Ty A

(1 /2 4
i"\\ ‘ 'V'O/)
Se——37/2 .
{ Y, (ro— rc31n6)rO
9, = G
/2
z, -2,
x [-1% i—6—5](19
6]’
[R(r ,2z,,
(63)
where + is for cylinder z, fz<® =
- is for cylinder -®» < z £ z,
and 2 in® + r 2 (64)
Q(ro,e) =z 2 - Zrcros1 o

Using formulae (62), (63), (64) and Fe§ulFs'obtained

in [10] one can prove that for a seml-lnflnite the
i = on

annulus, (rCi Srs rco) covered with Y, along

outer cylinder and with Y, along the inner cylinder,

the following formulae apply:

65
Limfv.] . =0 (65)
Freirfeo
z >+t »
66
lim[V_] =, t8al
z . 5T
ci’ co
z >t » [rCi <r & rCO] (67)
1im[V ]r r 0
2 Teirteo
z >+ ® [0<r<r orr >r_ ]

ci co

In the formulae (65), (66) and (67) the sigg + corres-
ponds to annulus the (ze < z < ®) and the sign -

<
corresponds to the annulus (-* < z £ ze).

iti i the expres-
Additionally it can be proved thaF
sions (65), (66) and (67) are val%d for any
y-distribution of the following kind:

Yy = \!o (1 + S(Z))
where

lim e(z) = 0
Z>00

Vortex filaments distributed along an arb1trar¥
surface of revolution. An arbitrary suFface o
revolution can be described @n.parameFrl? form
by two equations for its meridional line:

T = r(l) (68)

1]

z = z(2)

where £ is the length along the meridional line of
the surface
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The velocity components at a point (rc,zc) induced by
the circle vortex filaments intensity y(2) along the
surface (68) for 21 <2< 22 are:

Ay 2 ¥(2) (2_~2)sin6rdods
Blg== I & — =tk (69)
21 0 4n[R(r,z,0)]""

9 2n

2 Y(Z)(r-rcsiHE)rdBdl
- I J RS gt 1 1 (70)
2, 0 4n[R(r,z,0)] "

[v ]

zZ's

I

The equation (68) can be successfully approximated
using splining technique [11]. The curve (68) is
divided into segments and on each segment i it is
defined by Hermite interpolant polynomials
(H-coefficients are defined in (38)).

i dr dr
PO =y boeg gyt A (SR H dglir Hyp)

(71)

Z'80) =z H  +r. H. o+ (92 g 44y )
ito1 * TieqHyy i Vag'i Hoo * gglisty,

(72)

Therefore, since the function Y(2) can be expressed

by a Hermite interpolant polynominal on each segment
i of curve (68) as:

fo s dy dy
V) = oy oy H A ( aeli Hop * qplisn Hyp)

(73)

the integration with respect to £ can be carried out
in formulae (69) and (70).

After a substitution of (71), (72) and (73) into the
formulae (69) and (70) one obtains the following ex-
pressions for the velocity components at the point

(rc,zc) induced by the vortices yl(ﬂ) distributed
along segment i of the surface (68):

1

= dy dy
Ve = Y (Fopd, v [F ]+ aeliFoal, * Gl iea[Fppl,
(74)

i_ dy dy
Vo = ¥ilFoql, + vy [F 0+ aelilFoal, * Gglieq[Fpyl,

(75)

Each function F in the formulae (74) and (75) has the
following form:

9
n
a1 [nioh 0,(8)]a2; A
F=1/fad6J 6 1.5 6
0 4nl 3 ™ _(6)]
n=0
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It is clear that integrals of this type cannot be
taken analytically neither with respect to A nor 6.

In the case of the conical approximation of surface
element i:

P = r, (10 + £ (77)

2 (A) = 2 (1-A) + 2 gk (78)
and

MY = (g = 1)+ (o - 2" (79)

The denominator in the formula (76) becomes simpler
and integration with respect to A can be achieved.

Indeed, using (43), (77), (78) and (79), one obtains:
R(r,z,0) = A2A2 + A1A + A, (80)
where

A) = r? - 2r r.sin® + 2 + (z -z.)2
0 (id ci i c i

>
|

q = 2[(ri+1-ri) (ri-rcslnﬂ) + (zi+1—zi) (zi—zc)]
A, = Ag2
i
Consequently in view of (80) the expressions for co-

efficients F in the formulae (74) and (75) in case of
a conical segment have this form:

9
n
a1 [HEOA ¢, (0112 ar
F=1Ja6 [ ———~—~——-————“——jf§’ (81)
0 0 4n(A2A2 + AIA + AO) :

Integration with respect to A can be easily carried in
the formula (81) using the table integral 2.263 on
Page 82 in [13]. The actual formulae obtained as a
result of this integration are rather cumbersome and
do not fit the format of the present paper.

Now consider the point (rc,zc) which belongs the

conical element i, or (using (77) and (78)):

rC = ri + AC (ri+1 - ri) (833
Ze =2yt A (K - 1)

where
0= Ac <1

Substituting (82) into (80) one obtains, for 6 = /2,
that:

R(r,z,0) = Aﬂi (A2 - ZAAC + Aé) (83)
It is clear that for A=AC, R(r,z,8) = 0 and that the
integral (81) is improper. Generally speakiﬁg the
integrals (69) and (70) are improper if the point
(rc,zc) belongs to the surface of revolution (68),
since [R(r,z,G)]O'5 (which is the distance between
the points (r,z,6) and (rc,zc,n/Z)) becomes zero when

r=r,z= ER and 6 = /2.

2 how to compute the velocity components Vr and VZ for

It is shown in Appendix

a point (rc,zc) belonging to the surface (68).




APPENDIX 2

Computation of Velocity Components Induced by Vortices
Along a Conical Element at a Point Outside the
Element

The formulae for the velocity components induced by
vortices distributed along a conical element were de-
veloped in detail in the doctoral dissertation of

Dr. N. Ozboya [10] (the author of the present paper
was his graduate adviser). These formulae are based
on evident relations for y-distribution along conical
element (these relations were accepted instead of re-
lations (82) and (83) for convenience of derivation):

r(s) = c +t frs (84)

z(s) = c, t s (85)

s) = + f 86

¥(s) Ly 5o (86)
where s is the distance along segment AL forming

element, with s = 0 at the midpoint
(-0.5A2 £ 5 £ 0.5A0)

¢, = r(O),‘cZ = z(0) and cg = y(0) are the

values .of r, z and y at the middle point of
segment

fr’ fz and fg are the derivatives of r, z

and Yy with respect to s along the segment

As follows from (69), (70), (84), (85) and (86):

£ a2
3 2
_ 1 2 . 2 ArlS ¥ ArZS * Ar3S * Ar4
Vr = -y J sin6de [ 372 ds
n oA R
2 2
(87)
3n AL
3 2
_ 1 2 - AzlS * AZZS * AzSS * Az4
VZ—‘HI de_f 3/2 ds
V) R
2 2
(88)
where
Arl = - fz (fg.fr+hgcr)
Ar2 = fgfr(zc-cz) - fz(fgcr+frcg)
Ar3 = (Cgfr+crfg)(zc-cz) - fzcrcg
Ar4 = cgcr(zc-cz)
- 2
by =282
A =cf2+ f .f (2c_-r sinb)
22 gr g r r c
A23 = frcg(Zcr-rC51n6) + crfg(cr-rcsine)
A24 = cgcr(cr-rC51n0)
and R =B.s2 + B.s + B (89)

1 2 3
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where
B, = f2 + £2 = 1
1 r z
= - i + o
B2 Zfr(cr rC31n6) ZfZ(cZ zc)
B, = r2 - 2r c sin® + c2 + (c_-z )2
3 c cr r z ¢

The final formulae after integration with respect to
s are [13]:

3n AL
, 2 2
Vo=-gp J AT+ AT, + AT+ A_,T,)|sindde
n AL
2 2
(90) |
3n AL
y B 2 |
Vo= am (BT ¥ ATy ¥ ATy AT |
n - A
2
(91)
where:
2(2s+B,)
T o= 2
0 AR1/2
. 2(2B4+B,s)
SR ¥
(A-B2)s - 2B, B
T, = - ____2__175*_2_§ +1n 2R + 25 + B,]
AR
2 -2R2 -2R2
. As?+B, (10B,-3B2)s+B, (8B,-3B2)
3 AR 2
3B,
-Tlnlz\/ﬁ+2s+B2|
= - R2
A= 4B, - B2

The integrals (90) and (91) have to be integrated
numerically with respect to 6. It is not difficult
for the point (rc,zc) which does not belong to the

conical segment. The case of (rC,zC) being the
midpoint of the straight segment forming the conical
element is evaluated in next section of this Appendix.

Computation of Velocity Components Induced by Vortices
Along a Conical Element at the Midpoint of the
Segment Forming this Element

It was shown in Appendix 1 that R is equal to zero for

the point r = o 2= 2 and ©® = /2 and therefore the
functions TO, Tl’ T2 and T3 in (90) and (91) become
infinite. Consequently, in this case the integrals
(90) and (91) cannot be taken numerically for the
limits n/2 and 3m/2.

Let:

I =
Ar1T3 + Arsz + Ar Tl + Ar

3

4To

and

Fow %
Ap1T3 * AT, + AT + AT

The one can write in this case for £ > 0, that

V= Wy V5 (92)
Ve = Va1t Vp (93)
where
L
1 2
Vrl = o I Ir sin6do
n
2
3n
1 2
Vr2 = S Ir sin6bdo
m,
2
1 2
Vo=- o I I, de
n
2
3n
1 2
sz = T o i Iz de
zte

It is clear that Vr2 and sz can be computed numeric-

a}ly since 6 is never equal to n/2. TFor the computa=
tion of Vrl and VZl the function sin® (which is the

source of all difficulties in the analytic integra-

tion with respect to 6 in the formulae (90) and (91))
was written as:

e T 52
sin® = sin (f +8) =1 - N (0 £6<¢)
(94)
Usigg (94) the integrals defining V__ and V can be
easily taken analytically as follows [10]: =1
_ 1 AL
Vrl = fg o5 [(2n E; - ﬂne)Zcrsz] +
1 A2 (95)
cg 5 [(2n E; - fne - O.S)Zfrfze]
= 1 AL
Vzl = ngE_ (Zne - gn E—)Zfrcre +
r
(96)

1 AL
e o [fi -1+ 2f§(£n8 - 4o )]e
r

The formulae (92), (93), (95) and (96) can be used
for very accurate computation of Vr and V_ at the
z
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midpoint if one accepts the proper method for the

computation of Vr2 and sz and proper value for [

The formula (94) gives
£ <0.05; (94) gives a very good accuracy for

81 = 0.05 +

NI

sinB1 = 0.998750

2
1- QLgé— = 0.998750




