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I wrote an article with Irving Kaplansky on indefinite binary quadratic
forms, integral coefficients. At the time, I believe I used high-precision con-
tinued fractions or similar. It took me years to realize that the right way
to solve Pell’s equation, or find out the ”minimum” of an indefinite form
(and other small primitively represented values), or the period of its con-
tinued fraction, was the method of ”reduced” forms in cycles/chains, due to
Lagrange, Legendre, Gauss. It is also the cheapest way to find the class num-
ber and group multiplication for ideals in real quadratic fields, this probably
due to Dirichlet. For imaginary quadratic fields, we have easier ”reduced”
positive forms.

A binary quadratic form, with integer coefficients, is some

f(x, y) = Ax2 +Bxy + Cy2.

The discriminant is
∆ = B2 − 4AC.

We will abbreviate this by
〈A,B,C〉.

It is primitive if gcd(A,B,C) = 1. Standard fact, hard to discover but easy
to check:

(Ax2 +Bxy + CDy2)(Cz2 +Bzw + ADw2) = ACX2 +BXY +DY 2,

where X = xz − Dyw, Y = Axw + Cyz + Byw. This gives us Dirichlet’s
definition of ”composition” of quadratic forms of the same discriminant,

〈A,B,CD〉 ◦ 〈C,B,AD〉 = 〈AC,B,D〉.
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In particular, if this D = 1, the result represents 1 and is (SL2Z) equivalent
to the ”principal” form for this discriminant. Oh, duplication or squaring in
the group; if gcd(A,B) = 1,

〈A,B,AD〉2 = 〈A2, B,D〉.

This comes up with positive forms: 〈A,B,C〉 ◦ 〈A,−B,C〉 = 〈1, B, AC〉 is
principal, the group identity. Probably should display some SL2Z equiva-
lence rules, these are how we calculate when things are not quite right for
Dirichlet’s rule:

〈A,B,C〉 ∼= 〈C,−B,A〉,
〈A,B,C〉 ∼= 〈A,B + 2A,A+B + C〉,
〈A,B,C〉 ∼= 〈A,B − 2A,A− B + C〉.

Imaginary first. Suppose we want to know about Q(
√
−47). Reduced

positive forms 〈A,B,C〉 obey |B| ≤ A ≤ C and B 6= −A, also whenever
A = C we have B ≥ 0. Our group of binary forms is

-47

class number 5

all

( 1, 1, 12)

( 2, -1, 6)

( 2, 1, 6)

( 3, -1, 4)

( 3, 1, 4)

This is an abelian group in any case, so it is cyclic of order 5. These are also
the five elements in the ring of integers of Q(

√
−47). Here is the mapping

from forms to ideals: given 〈A,B,C〉, drop the letter C. That’s it.

〈A,B,C〉 7→
[

A,
B +

√
∆

2

]

.

Oh, why is this an ideal, rather than just some Z-lattice? Because, given
α, β rational integers,

[

α,
β +

√
∆

2

]
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is an ideal if and only if
4α|(∆− β2).

Group: we already see how to do

〈2, 1, 6〉2 ∼= 〈4, 1, 3〉 ∼= 〈3,−1, 4〉;

〈2, 1, 6〉 ◦ 〈3,−1, 4〉 ∼= 〈2, 5, 9〉 ◦ 〈3, 5, 6〉 ∼= 〈6, 5, 3〉 ∼= 〈3,−5, 6〉 ∼= 〈3, 1, 4〉;
〈2, 1, 6〉 ◦ 〈3, 1, 4〉 ∼= 〈6, 1, 2〉 ∼= 〈2,−1, 6〉.

〈2, 1, 6〉 ◦ 〈2,−1, 6〉 ∼= 〈1, 1, 12〉
in any case.

There are a few extra tricks for indefinite forms. The right way to cal-
culate things is to use ”reduced” forms. The definition of 〈A,B,C〉 being
reduced is

0 < B <
√
∆, and

√
∆− B < 2|A| <

√
∆+B,

this being equivalent to

0 < B <
√
∆, and

√
∆−B < 2|C| <

√
∆+B.

If you actually calculate enough Conway topographs, you realize eventu-
ally that

THEOREM 〈A,B,C〉 is reduced if and only if

AC < 0 and B > |A+ C|

I have never seen this in print, it should be attributed to Conway or to Jagy
or to Marty Weissman of UC Santa Cruz and Singapore; Conway knows
much more than he writes down. With the required relation

B2 − 4AC = ∆

and evident inequalities, this gives a quick way to find all reduced forms.
Now, different reduced forms may be equivalent, which sounds bad, but

the cycle method quickly decides these relationships. No decimal accuracy
or ”cycle detection” is ever required. A single calculation is done,

⌊√
∆
⌋

and
remembered forever. I actually wrote Newton’s square root method with
integer arithmetic. Everything else, forever, is integer arithmetic. Given a
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form 〈A,B,C〉 we want to find its ”right neighbor.” First, we find a nonzero
integer I like to call δ, with

δC > 0 and |δ| =








B +
⌊√

∆
⌋

2|C|







 .

The absolute values of the δ’s are the partial quotients in the continued
fraction of, well, something. Note that B and

⌊√
∆
⌋

are positive.
Alright, given a δ, the form and its right neighbor are

〈A,B,C〉 → 〈C,−B + 2Cδ,A− Bδ + Cδ2〉.

For those who know what a Gram matrix is, call it G, the Gram matrix of
the right neighbor is P TGP, where

P =

(

0 −1
1 δ

)

.

Keeping a cumulative product of these P matrices is how we solve Pell,
quickly and without tears. Note that the first computer they gave me was
called phoebus after Phoebus Apollo, this was intended to be phoebusjunior
but the spelling went sideways.

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./Pell 61

0 form 1 14 -12 delta -1

1 form -12 10 3 delta 4

2 form 3 14 -4 delta -3

3 form -4 10 9 delta 1

4 form 9 8 -5 delta -2

5 form -5 12 5 delta 2

6 form 5 8 -9 delta -1

7 form -9 10 4 delta 3

8 form 4 14 -3 delta -4

9 form -3 10 12 delta 1

10 form 12 14 -1 delta -14

11 form -1 14 12 delta 1

12 form 12 10 -3 delta -4
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13 form -3 14 4 delta 3

14 form 4 10 -9 delta -1

15 form -9 8 5 delta 2

16 form 5 12 -5 delta -2

17 form -5 8 9 delta 1

18 form 9 10 -4 delta -3

19 form -4 14 3 delta 4

20 form 3 10 -12 delta -1

21 form -12 14 1 delta 14

22 form 1 14 -12

disc 244

Automorph, written on right of Gram matrix:

183241189 2713847760

226153980 3349396909

Pell automorph

1766319049 13795392780

226153980 1766319049

Pell unit

1766319049^2 - 61 * 226153980^2 = 1

=========================================

Pell NEGATIVE

29718^2 - 61 * 3805^2 = -1

=========================================

4 PRIMITIVE

1523^2 - 61 * 195^2 = 4

=========================================

-4 PRIMITIVE

39^2 - 61 * 5^2 = -4
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=========================================

Here we are using
〈1, 0,−61〉 ∼= 〈1, 14,−12〉.

It begins with 〈1, 14,−12〉 and does not end until it gets 〈1, 14,−12〉 again,
this being guaranteed. No floating point reals anywhere, no decimal accuracy,
no doubts. Think Gwen Stefani. Note that ”Automorph” is a traditional
word for the matrix P when P TGP = G.

Ideals; with positive prime discriminant p ≡ 1 (mod 4), the principal
form always represents both 1 and −1, and, just as with positive forms, the
mapping to ideals is a bijection a group isomorphism. I did some example
with class number above one:

jagy@phobeusjunior: ./indefCycle_All_Reduced 229

1. 1 15 -1 cycle length 2

2. 3 13 -5 cycle length 6

3. 5 13 -3 cycle length 6

form class number is 3

jagy@phobeusjunior: ./indefCycle_All_Reduced 257

1. 1 15 -8 cycle length 6

2. 2 15 -4 cycle length 6

3. 4 15 -2 cycle length 6

form class number is 3

jagy@phobeusjunior: ./indefCycle_All_Reduced 401

1. 1 19 -10 cycle length 6

2. 2 19 -5 cycle length 6

3. 5 19 -2 cycle length 6

4. 4 17 -7 cycle length 10
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5. 7 17 -4 cycle length 10

form class number is 5

jagy@phobeusjunior:

Now, if the discriminant is divisible by any prime q ≡ 3 (mod 4), or we
just have bad luck with the prime factors p ≡ 1 (mod 4), then the principal
form does not represent −1 and the mapping from forms to ideals becomes
two to one. I really thought there was a big mystery, but no. Here is an
example ∆ = 5 · 13 · 17 · 41 = 45305. There are 316 reduced forms collected
into 16 cycles:

jagy@phobeusjunior: ./indefCycle_All_Reduced 45305

45305 factored 5 * 13 * 17 * 41

1. 1 211 -196 cycle length 12

2. -1 211 196 cycle length 12

3. 2 211 -98 cycle length 16

4. -2 211 98 cycle length 16

5. 7 211 -28 cycle length 18

6. -7 211 28 cycle length 18

7. 14 211 -14 cycle length 20

8. -14 211 14 cycle length 20

9. 5 205 -164 cycle length 20

10. -5 205 164 cycle length 20

11. 10 205 -82 cycle length 24

12. -10 205 82 cycle length 24

13. 13 195 -140 cycle length 22

14. -13 195 140 cycle length 22

15. 26 195 -70 cycle length 26

16. -26 195 70 cycle length 26

form class number is 16

jagy@phobeusjunior:
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My software tends to report, for each cycle, a form with particularly large
B. Now, as you can see, 〈1, 211,−196〉 and 〈−1, 211, 196〉 are distinct SL2Z

classes, distinct cycles.
When this happens, in slang I like 1 6= −1, we can prove that

〈A,B,−C〉

and
〈−A,B,C〉

are ALWAYS DISTINCT SL2Z classes. Because, you see,

〈−1, B, AC〉 ◦ 〈A,B,−C〉 = 〈−A,B,C〉.

So, the mapping to ideals says IDENTIFY 〈A,B,−C〉 and 〈−A,B,C〉, send
them to the same ideal. Why not? We already have an equality of ideals in

[

A,
B +

√
∆

2

]

=

[

−A,
B +

√
∆

2

]

.

So, we just take the form from each pair with positive A, which cuts the form
class number by half, down from 16 to 8, and the ideals are

[

1,
211 +

√
45305

2

]

,

[

2,
211 +

√
45305

2

]

,

[

7,
211 +

√
45305

2

]

,

[

14,
211 +

√
45305

2

]

,

[

5,
205 +

√
45305

2

]

,

[

10,
205 +

√
45305

2

]

,
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[

13,
195 +

√
45305

2

]

,

[

26,
195 +

√
45305

2

]

.

One other valuable idea that I can impart here is that of genus. If you
check, with either the forms or the ideals, you will find that each one squares
to the identity. We say that each genus has only one class. It follows auto-
matically the=at the ideal class group is not cyclic, it is (Z/2Z)3. I worked
a fair amount to get the group table, then I thought, why not just use the
Legendre symbols? And that works perfectly.

5 13 17 41
1 + + + +
2 − − + +
7 − − − −
14 + + − −

5 → 46 + − − +
10 → 23 − + − +
13 → 38 − + + −
26 → 19 + − + −

As you can see, if the first coefficient has a common divisor with the dis-
criminant, we switch to some other number represented by the quadratic
form. This table, because there is just one class per genus, immediately
tells the multiplication. Just multiply the Legendre symbols for each factor
5, 13, 17, 41.

The Cohen-Lenstra heuristics say that the vast majority of class groups
are cyclic. I did an example where that works, despite having more than one
genus. Here, most forms do not square to the identity.

jagy@phobeusjunior: ./indefCycle_All_Reduced 1345

1345 factored 5 * 269

1. 1 35 -30 cycle length 6

2. -1 35 30 cycle length 6

3. 2 35 -15 cycle length 8

4. -2 35 15 cycle length 8

5. 3 35 -10 cycle length 8
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6. -3 35 10 cycle length 8

7. 4 33 -16 cycle length 10

8. -4 33 16 cycle length 10

9. 8 33 -8 cycle length 10

10. -8 33 8 cycle length 10

11. 16 33 -4 cycle length 10

12. -16 33 4 cycle length 10

form class number is 12

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$

Now, as forms,
〈8, 33,−8〉2 = 〈64, 33,−1〉

is minus the identity. However, as ideals this is identified with the principal
class. I worked it all out, the multiplication table is

1 4 16 8 2 3
1 1 4 16 8 2 3
4 4 16 1 2 3 8
16 16 1 4 3 8 2
8 8 2 3 1 4 16
2 2 3 8 4 16 1
3 3 8 2 16 1 4

.

I placed outlines around the two genera; 1, 4, 16 are quadratic residues
(mod 5) and (mod 269). Then 8, 2, 3 are nonresidues. The group is cyclic,
either 2 or 3 is a generator.

Finally, something quite tricky. The ideal viewpoint identifies the quadratic
forms 〈1, 13,−13〉 and 〈−1, 13, 13〉 of discriminant 221 = 13·17. However, the
traditional concern is to find out the (positive) primes integrally represented
by a form. This then moves to what is called class field theory; the primes
represented by 〈1, 13,−13〉 are those (answer by Noam Elkies) for which

x8 + 34x6 + 83x4 + 34x2 + 1 (mod p)

factors into all linear factors. Put another way, 〈1, 13,−13〉 represents 17
and all primes (p|13) = (p|17) = 1 such that

x4 + x3 + x2 + 2x+ 4 (mod p)
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factors into all linear factors. Go Figure. In comparison, the primes rep-
resented by 〈5, 11,−5〉 are simply all those that are quadratic nonresidues
(mod 13) and (mod 17), becuase the other class in its (form) genus is
〈−5, 11, 5〉 which represents exactly the same numbers. Oh, and this is a
Markov form: the nonzero number represented of smallest absolute value is
5, which is called the ”minimum” and might be written m. Then, ∆/m2 =
221/25 = 8.84 < 9, which means this must be a Markov form, parametrised
by the Markov Numbers, which include 5. There is considerable rigidity when
9m2 > ∆, i.e. extremely large minimum.
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